“Megapixel adaptive optics: towards correcting large-scale distortions in computational cameras” by Wang, Fu, Dun and Heidrich

  • ©Congli Wang, Qiang Fu, Xiong Dun, and Wolfgang Heidrich



Entry Number: 115


    Megapixel adaptive optics: towards correcting large-scale distortions in computational cameras

Session/Category Title: Computational Cameras




    Adaptive optics has become a valuable tool for correcting minor optical aberrations in applications such as astronomy and microscopy. However, due to the limited resolution of both the wavefront sensing and the wavefront correction hardware, it has so far not been feasible to use adaptive optics for correcting large-scale waveform deformations that occur naturally in regular photography and other imaging applications.In this work, we demonstrate an adaptive optics system for regular cameras. We achieve a significant improvement in focus for large wavefront distortions by improving upon a recently developed high resolution coded wavefront sensor, and combining it with a spatial phase modulator to create a megapixel adaptive optics system with unprecedented capability to sense and correct large distortions.


    1. Mariana SC Almeida and Mario Figueiredo. 2013. Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process 22, 8 (2013), 3074–3086.Google ScholarCross Ref
    2. Nicholas Antipa, Sylvia Necula, Ren Ng, and Laura Waller. 2016. Single-shot diffuser-encoded light field imaging. In Proc. ICCP. IEEE, 1–11.Google ScholarCross Ref
    3. Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3d capture of non-stationary gas flows. ACM Trans. Graph. 27, 5 (2008), 132. Google ScholarDigital Library
    4. Jacques M Beckers. 1988. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. In Proc. ESOCW, Vol. 30. 693.Google Scholar
    5. Jacques M Beckers. 1993. Adaptive optics for astronomy: principles, performance, and applications. Annu. Rev. Astron. Astrophys. 31, 1 (1993), 13–62.Google ScholarCross Ref
    6. Pascal Berto, Hervé Rigneault, and Marc Guillon. 2017. Wavefront sensing with a thin diffuser. Opt. Lett. 42, 24 (2017), 5117–5120.Google ScholarCross Ref
    7. Sébastien Bérujon, Eric Ziegler, Roberto Cerbino, and Luca Peverini. 2012. Two-dimensional x-ray beam phase sensing. Phys. Rev. Lett. 108, 15 (2012), 158102.Google ScholarCross Ref
    8. Thomas G Bifano, Julie Perreault, R Krishnamoorthy Mali, and Mark N Horenstein. 1999. Microelectromechanical deformable mirrors. IEEE J. Select. Topics Quantum Electron 5, 1 (1999), 83–89.Google ScholarCross Ref
    9. Martin J Booth. 2014. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, 4 (2014), e165.Google Scholar
    10. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011), 1–122. Google ScholarDigital Library
    11. Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. 2004. High accuracy optical flow estimation based on a theory for warping. In Proc. ECCV. Springer, 25–36.Google Scholar
    12. Sunghyun Cho and Seungyong Lee. 2009. Fast motion deblurring. ACM Trans. Graph. 28, 5 (2009), 145. Google ScholarDigital Library
    13. Sunghyun Cho, Jue Wang, and Seungyong Lee. 2011. Handling outliers in non-blind image deconvolution. In Proc. ICCV. IEEE, 495–502. Google ScholarDigital Library
    14. Oliver Cossairt and Shree Nayar. 2010. Spectral focal sweep: Extended depth of field from chromatic aberrations. In Proc. ICCP. IEEE, 1–8.Google ScholarCross Ref
    15. E Diolaiti, R Ragazzoni, and M Tordi. 2001. Closed loop performance of a layer-oriented multi-conjugate adaptive optics system. Astron. Astrophys 372, 2 (2001), 710–718.Google ScholarCross Ref
    16. Jiangxin Dong, Jinshan Pan, Zhixun Su, and Ming-Hsuan Yang. 2017. Blind Image Deblurring with Outlier Handling. In Proc. CVPR. 2478–2486.Google ScholarCross Ref
    17. Edward R Dowski and W Thomas Cathey. 1995. Extended depth of field through wave-front coding. Appl. Opt. 34, 11 (1995), 1859–1866.Google ScholarCross Ref
    18. Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T Roweis, and William T Freeman. 2006. Removing camera shake from a single photograph. ACM Trans. Graph. 25, 3 (2006), 787–794. Google ScholarDigital Library
    19. Enrique J Fernández, Ignacio Iglesias, and Pablo Artal. 2001. Closed-loop adaptive optics in the human eye. Opt. Lett. 26, 10 (2001), 746–748.Google ScholarCross Ref
    20. B Hermann, EJ Fernández, A Unterhuber, H Sattmann, AF Fercher, W Drexler, PM Prieto, and P Artal. 2004. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29, 18 (2004), 2142–2144.Google ScholarCross Ref
    21. Berthold KP Horn and Brian G Schunck. 1981. Determining optical flow. Artificial intelligence 17, 1–3 (1981), 185–203. Google ScholarDigital Library
    22. Lifa Hu, Li Xuan, Yongjun Liu, Zhaoliang Cao, Dayu Li, and QuanQuan Mu. 2004. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision. Opt. Express 12, 26 (2004), 6403–6409.Google ScholarCross Ref
    23. Zhe Hu, Sunghyun Cho, Jue Wang, and Ming-Hsuan Yang. 2014. Deblurring low-light images with light streaks. In Proc. CVPR. 3382–3389. Google ScholarDigital Library
    24. Julian Iseringhausen, Bastian Goldlücke, Nina Pesheva, Stanimir Iliev, Alexander Wender, Martin Fuchs, and Matthias B Hullin. 2017. 4D imaging through spray-on optics. ACM Trans. Graph. 36, 4 (2017), 35. Google ScholarDigital Library
    25. Mooseokjang, Haowen Ruan, Haojiang Zhou, Benjamin Judkewitz, and Changhuei Yang. 2014. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation. Opt. Express 22, 12 (2014), 14054–14071.Google ScholarCross Ref
    26. Hui Ji and Kang Wang. 2012. Robust image deblurring with an inaccurate blur kernel. IEEE Trans. Image Process. 21, 4 (2012), 1624–1634. Google ScholarDigital Library
    27. Na Ji, Daniel E Milkie, and Eric Betzig. 2010. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 2 (2010), 141–147.Google ScholarCross Ref
    28. Dilip Krishnan, Terence Tay, and Rob Fergus. 2011. Blind deconvolution using a normalized sparsity measure. In Proc. CVPR. IEEE, 233–240. Google ScholarDigital Library
    29. RG Lane, A Glindemann, JC Dainty, et al. 1992. Simulation of a Kolmogorov phase screen. Waves in random media 2, 3 (1992), 209–224.Google Scholar
    30. Anat Levin, Rob Fergus, Frédo Durand, and William T Freeman. 2007. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 3 (2007), 70. Google ScholarDigital Library
    31. Anat Levin, Samuel W Hasinoff, Paul Green, Frédo Durand, and William T Freeman. 2009. 4D frequency analysis of computational cameras for depth of field extension. ACM Trans. Graph. 28, 3 (2009), 97. Google ScholarDigital Library
    32. Anat Levin, Peter Sand, Taeg Sang Cho, Frédo Durand, and William T Freeman. 2008. Motion-invariant photography. ACM Trans. Graph. 27, 3 (2008), 71. Google ScholarDigital Library
    33. Chao Li, Mingliang Xia, Quanquan Mu, Baoguang Jiang, Li Xuan, and Zhaoliang Cao. 2009. High-precision open-loop adaptive optics system based on LC-SLM. Opt. Express 17, 13 (2009), 10774–10781.Google ScholarCross Ref
    34. Junzhong Liang, David R Williams, and Donald T Miller. 1997. Supernormal vision and high-resolution retinal imaging through adaptive optics. JOSA A 14, 11 (1997), 2884–2892.Google ScholarCross Ref
    35. Gordon D Love. 1997. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl. Opt. 36, 7 (1997), 1517–1524.Google ScholarCross Ref
    36. Enrico Marchetti, Roland Brast, Bernard Delabre, Robert Donaldson, Enrico Fedrigo, Christoph Frank, Norbert Hubin, Johann Kolb, Jean-Louis Lizon, Massimiliano Marchesi, et al. 2007. On-sky testing of the multi-conjugate adaptive optics demonstrator. The Messenger 129, 8 (2007).Google Scholar
    37. PN Marsh, D Burns, and JM Girkin. 2003. Practical implementation of adaptive optics in multiphoton microscopy. Opt. Express 11, 10 (2003), 1123–1130.Google ScholarCross Ref
    38. Kshitij Marwah, Gordon Wetzstein, Yosuke Bando, and Ramesh Raskar. 2013. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. 32, 4 (2013), 46. Google ScholarDigital Library
    39. Tomer Michaeli and Michal Irani. 2014. Blind deblurring using internal patch recurrence. In Proc. ECCV. Springer, 783–798.Google Scholar
    40. Kaye S Morgan, David M Paganin, and Karen KW Siu. 2012. X-ray phase imaging with a paper analyzer. Appl. Phys. Lett. 100, 12 (2012), 124102.Google ScholarCross Ref
    41. Ren Ng. 2005. Fourier slice photography. ACM Trans. Graph. 24, 3 (2005), 735–744. Google ScholarDigital Library
    42. Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan. 2005. Light field photography with a hand-held plenoptic camera. CSTR 2, 11 (2005), 1–11.Google Scholar
    43. Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang. 2016. Blind image deblurring using dark channel prior. In Proc. CVPR. 1628–1636.Google ScholarCross Ref
    44. Julie A Perreault, Thomas G Bifano, B Martin Levine, and Mark N Horenstein. 2002. Adaptive optic correction using microelectromechanical deformable mirrors. Opt. Eng 41, 3 (2002), 561–566.Google ScholarCross Ref
    45. Jérôme Primot and Nicolas Guérineau. 2000. Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard. Appl. Opt. 39, 31 (2000), 5715–5720.Google ScholarCross Ref
    46. JetLSOGNO Primot and L Sogno. 1995. Achromatic three-wave (or more) lateral shearing interferometer. JOSA A 12, 12 (1995), 2679–2685.Google ScholarCross Ref
    47. Roberto Ragazzoni. 1996. Pupil plane wavefront sensing with an oscillating prism. J MOD OPTIC 43, 2 (1996), 289–293.Google ScholarCross Ref
    48. Ramesh Raskar, Amit Agrawal, and Jack Tumblin. 2006. Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. Graph. 25, 3 (2006), 795–804. Google ScholarDigital Library
    49. Hugues Richard and Markus Raffel. 2001. Principle and Applications of the Background Oriented Schlieren (BOS) Method. Meas. Sci. and Techn. (2001), 1576–1585.Google Scholar
    50. Francois Roddier. 1988. Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt. 27, 7 (1988), 1223–1225.Google ScholarCross Ref
    51. Austin Roorda, Fernando Romero-Borja, William J Donnelly III, Hope Queener, Thomas J Hebert, and Melanie CW Campbell. 2002. Adaptive optics scanning laser ophthalmoscopy. Opt. Express 10, 9 (2002), 405–412.Google ScholarCross Ref
    52. Leslie K Saddlemyer, Glen Herriot, Jean-Pierre Véran, and Murray Fletcher. 1998. Design aspects of the reconstructor for the Gemini Adaptive Optics System (Altair). 3353 (1998), 150–159.Google Scholar
    53. Roland V Shack and BC Platt. 1971. Production and use of a lenticular Hartmann screen. JOSA A 61, 5 (1971), 656.Google Scholar
    54. Deqing Sun, Stefan Roth, and Michael J Black. 2010. Secrets of optical flow estimation and their principles. In Proc. CVPR. IEEE, 2432–2439.Google ScholarCross Ref
    55. Libin Sun, Sunghyun Cho, Jue Wang, and James Hays. 2013. Edge-based blur kernel estimation using patch priors. In Proc. ICCP. IEEE, 1–8.Google Scholar
    56. Michael Reed Teague. 1983. Deterministic phase retrieval: a Green’s function solution. JOSA A 73, 11 (1983), 1434–1441.Google ScholarCross Ref
    57. Fernando Vargas-Martin, Pedro M Prieto, and Pablo Artal. 1998. Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance. JOSA A 15, 9 (1998), 2552–2562.Google ScholarCross Ref
    58. Ashok Veeraraghavan, Ramesh Raskar, Amit Agrawal, Ankit Mohan, and Jack Tumblin. 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26, 3 (2007), 69. Google ScholarDigital Library
    59. Laura Waller, Shan Shan Kou, Colin JR Sheppard, and George Barbastathis. 2010a. Phase from chromatic aberrations. Opt. Express 18, 22 (2010), 22817–22825.Google ScholarCross Ref
    60. Laura Waller, Lei Tian, and George Barbastathis. 2010b. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express 18, 12 (2010), 12552–12561.Google ScholarCross Ref
    61. Congli Wang, Xiong Dun, Qiang Fu, and Wolfgang Heidrich. 2017. Ultra-high resolution coded wavefront sensor. Opt. Express 25, 12 (2017), 13736–13746.Google ScholarCross Ref
    62. Li Xu and Jiaya Jia. 2010. Two-phase kernel estimation for robust motion deblurring. In Proc. ECCV. Springer, 157–170. Google ScholarDigital Library
    63. Li Xu, Shicheng Zheng, and Jiaya Jia. 2013. Unnatural 10 sparse representation for natural image deblurring. In Proc. CVPR. IEEE, 1107–1114. Google ScholarDigital Library
    64. Zhimin Xu, Jun Ke, and Edmund Y Lam. 2012. High-resolution lightfield photography using two masks. Opt. Express 20, 10 (2012), 10971–10983.Google ScholarCross Ref
    65. Yan Zhang, Barry Cense, Jungtae Rha, Ravi S Jonnal, Weihua Gao, Robert J Zawadzki, John S Werner, Steve Jones, Scot Olivier, and Donald T Miller. 2006. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt. Express 14, 10 (2006), 4380–4394.Google ScholarCross Ref
    66. Changyin Zhou and Shree Nayar. 2009. What are good apertures for defocus deblurring?. In Proc. ICCP. IEEE, 1–8.Google ScholarCross Ref
    67. Lijun Zhu, Pang-Chen Sun, Dirk-Uwe Bartsch, William R Freeman, and Yeshaiahu Fainman. 1999. Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation. Appl. Opt. 38, 1 (1999), 168–176.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: