“Mean value coordinates for closed triangular meshes” by Ju, Schaefer and Warren

  • ©Tao Ju, Scott Schaefer, and Joe Warren




    Mean value coordinates for closed triangular meshes



    Constructing a function that interpolates a set of values defined at vertices of a mesh is a fundamental operation in computer graphics. Such an interpolant has many uses in applications such as shading, parameterization and deformation. For closed polygons, mean value coordinates have been proven to be an excellent method for constructing such an interpolant. In this paper, we generalize mean value coordinates from closed 2D polygons to closed triangular meshes. Given such a mesh P, we show that these coordinates are continuous everywhere and smooth on the interior of P. The coordinates are linear on the triangles of P and can reproduce linear functions on the interior of P. To illustrate their usefulness, we conclude by considering several interesting applications including constructing volumetric textures and surface deformation.


    1. Beyer, W. H. 1987. CRC Standard Mathematical Tables (28th Edition). CRC Press.Google Scholar
    2. Coquillart, S. 1990. Extended free-form deformation: a sculpturing tool for 3d geometric modeling. In SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, ACM Press, 187–196. Google ScholarDigital Library
    3. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum 21, 3, 209–218.Google ScholarCross Ref
    4. Fleming, W., Ed. 1977. Functions of Several Variables. Second edition. Springer-Verlag.Google Scholar
    5. Floater, M. S., and Hormann, K. 2005. Surface parameterization: a tutorial and survey. In Advances in Multiresolution for Geometric Modelling, N. A. Dodgson, M. S. Floater, and M. A. Sabin, Eds., Mathematics and Visualization. Springer, Berlin, Heidelberg, 157–186.Google Scholar
    6. Floater. M. S., Kos., G., and Reimers, M. 2005. Mean value coordinates in 3d. To appear in CAGD. Google ScholarDigital Library
    7. Floater, M. 1997. Parametrization and smooth approximation of surface triangulations. CAGD 14, 3, 231–250. Google ScholarDigital Library
    8. Floater, M. 1998. Parametric Tilings and Scattered Data Approximation. International Journal of Shape Modeling 4, 165–182.Google ScholarCross Ref
    9. Floater, M. S. 2003. Mean value coordinates. Comput. Aided Geom. Des. 20, 1, 19–27. Google ScholarDigital Library
    10. Hormann, K., and Greiner, G. 2000. MIPS – An Efficient Global Parametrization Method. In Curves and Surfaces Proceedings (Saint Malo, France), 152–163.Google Scholar
    11. Hormann, K. 2004. Barycentric coordinates for arbitrary polygons in the plane. Tech. rep., Clausthal University of Technology, September. http://www.in.tuclausthal.de/ hormann/papers/barycentric.pdf.Google Scholar
    12. Khodakovsky, A., Litke, N., and Schroeder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350–357. Google ScholarDigital Library
    13. Kobayashi, K. G., and Ootsubo, K. 2003. t-ffd: free-form deformation by using triangular mesh. In SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and application, ACM Press, 226–234. Google ScholarDigital Library
    14. Loop, C., and Derose, T. 1989. A multisided generalization of Bézier surfaces. ACM Transactions on Graphics 8, 204–234. Google ScholarDigital Library
    15. MacCracken, R., and Joy, K. I. 1996. Free-form deformations with lattices of arbitrary topology. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM Press, 181–188. Google ScholarDigital Library
    16. Malsch, E., and Dasgupta, G. 2003. Algebraic construction of smooth interpolants on polygonal domains. In Proceedings of the 5th International Mathematica Symposium.Google Scholar
    17. Meyer, M., Lee, H., Barr, A., and Desbrun, M. 2002. Generalized Barycentric Coordinates for Irregular Polygons. Journal of Graphics Tools 7, 1, 13–22. Google ScholarDigital Library
    18. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graph. 23, 3, 870–877. Google ScholarDigital Library
    19. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques, ACM Press, 151–160. Google ScholarDigital Library
    20. Wachspress, E. 1975. A Rational Finite Element Basis. Academic Press, New York.Google Scholar
    21. Warren, J., Schaefer, S., Hirani, A., and Desbrun, M. 2004. Barycentric coordinates for convex sets. Tech. rep., Rice University.Google Scholar
    22. Warren, J. 1996. Barycentric Coordinates for Convex Polytopes. Advances in Computational Mathematics 6, 97–108.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: