“MatFormer: a generative model for procedural materials” by Guerrero, Hasan, Sunkavalli, Mech, Boubekeur, et al. …

  • ©Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and Niloy J. Mitra

Conference:


Type(s):


Title:

    MatFormer: a generative model for procedural materials

Presenter(s)/Author(s):



Abstract:


    Procedural material graphs are a compact, parameteric, and resolution-independent representation that are a popular choice for material authoring. However, designing procedural materials requires significant expertise and publicly accessible libraries contain only a few thousand such graphs. We present MatFormer, a generative model that can produce a diverse set of high-quality procedural materials with complex spatial patterns and appearance. While procedural materials can be modeled as directed (operation) graphs, they contain arbitrary numbers of heterogeneous nodes with unstructured, often long-range node connections, and functional constraints on node parameters and connections. MatFormer addresses these challenges with a multi-stage transformer-based model that sequentially generates nodes, node parameters, and edges, while ensuring the semantic validity of the graph. In addition to generation, MatFormer can be used for the auto-completion and exploration of partial material graphs. We qualitatively and quantitatively demonstrate that our method outperforms alternative approaches, in both generated graph and material quality.

References:


    1. Rameen Abdal, Yipeng Qin, and Peter Wonka. 2019. Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?. In ICCV.Google Scholar
    2. Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter Wonka. 2021. StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows. In ACM SIGGRAPH.Google Scholar
    3. Adobe. 2019. Substance. www.substance3d.com.Google Scholar
    4. Adobe. 2021a. Substance. https://substance3d.adobe.com/community-assets.Google Scholar
    5. Adobe. 2021b. Substance. https://substance3d.adobe.com/assets.Google Scholar
    6. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).Google Scholar
    7. Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Association for Computational Linguistics.Google ScholarCross Ref
    8. Kingma Diederik, Ba Jimmy, et al. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014), 273–297.Google Scholar
    9. Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: Automatic Conversion of 3D Models to CSG Trees. In ACM SIGGRAPH Asia.Google Scholar
    10. Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. 2021. Dreamcoder: Bootstrapping inductive program synthesis with wake-sleep library learning. In ACM SIGPLAN.Google Scholar
    11. Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Drettakis. 2012. Gabor Noise by Example. In ACM SIGGRAPH.Google Scholar
    12. Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015a. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015).Google Scholar
    13. Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015b. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015).Google Scholar
    14. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In NeurIPS.Google Scholar
    15. Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. 2020a. A Bayesian Inference Framework for Procedural Material Parameter Estimation. Computer Graphics Forum 39, 7 (2020).Google Scholar
    16. Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. 2020b. MaterialGAN: Reflectance Capture Using a Generative SVBRDF Model. ACM Trans. Graph. 39, 6, Article 254 (2020), 13 pages.Google ScholarDigital Library
    17. Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. 2020. GANSpace: Discovering Interpretable GAN Controls. In NeurIPS.Google Scholar
    18. Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer.Google Scholar
    19. Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. 2019. Learning a Neural 3D Texture Space from 2D Exemplars. In IEEE CVPR.Google Scholar
    20. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS.Google Scholar
    21. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.Google Scholar
    22. Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. 2016. Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks. CoRR abs/1605.09674 (2016).Google ScholarDigital Library
    23. Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for Inverse Procedural Texture Modeling. ACM Trans. Graph. 38, 6 (Nov. 2019), 186:1–186:14.Google ScholarDigital Library
    24. Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022. An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Trans. Graph. 41, 2 (2022), 1–17.Google ScholarDigital Library
    25. R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis. In ACM SIGGRAPH Asia.Google Scholar
    26. Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. In IEEE CVPR.Google Scholar
    27. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN.Google Scholar
    28. Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, and Durk Kingma. 2020. VideoFlow: A Flow-Based Generative Model for Video. In ICML.Google Scholar
    29. Laurent Lefebvre and Pierre Poulin. 2000. Analysis and Synthesis of Structural Textures. In Graphics Interface.Google Scholar
    30. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas J. Guibas. 2017. GRASS: Generative Recursive Autoencoders for Shape Structures. In ACM SIGGRAPH.Google Scholar
    31. Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2019. Synthesizing 3d shapes from silhouette image collections using multi-projection generative adversarial networks. In IEEE CVPR.Google Scholar
    32. Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas Guibas. 2019. StructureNet: Hierarchical Graph Networks for 3D Shape Generation. In ACM SIGGRAPH Asia.Google Scholar
    33. Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter Battaglia. 2020. PolyGen: An Autoregressive Generative Model of 3D Meshes. In ICML.Google Scholar
    34. Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel Recurrent Neural Networks. In ICML.Google Scholar
    35. Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas J. Guibas, and Peter Wonka. 2021. SketchGen: Generating Constrained CAD Sketches. In NeurIPS.Google Scholar
    36. Darwyn R. Peachey. 1985. Solid Texturing of Complex Surfaces. In ACM SIGGRAPH.Google Scholar
    37. Ken Perlin. 1985. An Image Synthesizer. In ACM SIGGRAPH.Google Scholar
    38. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.Google Scholar
    39. Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. 2020. Sketchformer: Transformer-based Representation for Sketched Structure. In IEEE CVPR.Google Scholar
    40. Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. 2021. Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation. In IEEE CVPR.Google Scholar
    41. Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 1998. A metric for distributions with applications to image databases. In IEEE ICCV.Google Scholar
    42. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions on Neural Networks 20, 1 (2009), 61–80.Google ScholarDigital Library
    43. Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech, and Wojciech Matusik. 2020. Match: Differentiable Material Graphs for Procedural Material Capture. In ACM SIGGRAPH Asia.Google ScholarDigital Library
    44. Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR.Google Scholar
    45. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE CVPR.Google Scholar
    46. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In NeurIPS.Google Scholar
    47. Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In NeurIPS.Google Scholar
    48. Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik. 2021. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Reconstruction. ACM Trans. Graph. 40, 4 (2021).Google ScholarDigital Library
    49. Andrew Witkin and Michael Kass. 1991. Reaction-Diffusion Textures. In ACM SIGGRAPH. Steven Worley. 1996. A Cellular Texture Basis Function. In ACM SIGGRAPH.Google Scholar
    50. Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In IEEE ICCV.Google Scholar
    51. Cheng-Fu Yang, Wan-Cyuan Fan, Fu-En Yang, and Yu-Chiang Frank Wang. 2021. LayoutTransformer: Scene Layout Generation With Conceptual and Spatial Diversity. In IEEE CVPR.Google Scholar
    52. Xilong Zhou and Nima Khademi Kalantari. 2021. Adversarial Single-Image SVBRDF Estimation with Hybrid Training. Computer Graphics Forum 40, 2 (2021), 315–325.Google ScholarCross Ref
    53. Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. 2020. In-domain GAN Inversion for Real Image Editing. In ECCV.Google Scholar


ACM Digital Library Publication:



Overview Page: