“Matching fluid simulation elements to surface geometry and topology” by Brochu, Batty and Bridson

  • ©Tyson Brochu, Christopher Batty, and Robert Bridson

Conference:


Type(s):


Title:

    Matching fluid simulation elements to surface geometry and topology

Presenter(s)/Author(s):



Abstract:


    We introduce an Eulerian liquid simulation framework based on the Voronoi diagram of a potentially unorganized collection of pressure samples. Constructing the simulation mesh in this way allows us to place samples anywhere in the computational domain; we exploit this by choosing samples that accurately capture the geometry and topology of the liquid surface. When combined with high-resolution explicit surface tracking this allows us to simulate nearly arbitrarily thin features, while eliminating noise and other artifacts that arise when there is a resolution mismatch between the simulation and the surface—and allowing a precise inclusion of surface tension based directly on and at the same resolution as the surface mesh. In addition, we present a simplified Voronoi/Delaunay mesh velocity interpolation scheme, and a direct extension of embedded free surfaces and solid boundaries to Voronoi meshes.

References:


    1. Bargteil, A. W., Goktekin, T. G., O’brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19–38. Google ScholarDigital Library
    2. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3, 100. Google ScholarDigital Library
    3. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Proc. Eurographics 2010, to appear.Google Scholar
    4. Brackbill, J. U., Kothe, D. B., and Zemach, C. 1992. A continuum method for modeling surface tension. J. Comput. Phys. 100, 2, 335–354. Google ScholarDigital Library
    5. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters. Google ScholarDigital Library
    6. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472–2493. Google ScholarDigital Library
    7. Brochu, T. 2006. Fluid Animation with Explicit Surface Meshes and Boundary-Only Dynamics. Master’s thesis, University of British Columbia.Google Scholar
    8. Campen, M., and Kobbelt, L. 2010. Exact and robust (self-)intersections for polygonal meshes. Proc. Eurographics 2010, to appear.Google Scholar
    9. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O’Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc. Symp. Comp. Anim. 2006, 83–89. Google ScholarDigital Library
    10. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. Symp. Comp. Anim. 2007, 219–228. Google ScholarDigital Library
    11. Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y., and Wu, L. 2006. A simple package for front tracking. J. Comput. Phys. 213, 2, 613–628. Google ScholarDigital Library
    12. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1, 4. Google ScholarDigital Library
    13. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 1, 83–116. Google ScholarDigital Library
    14. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3, 736–744. Google ScholarDigital Library
    15. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Engineering Conference.Google Scholar
    16. Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 904–909. Google ScholarDigital Library
    17. Feldman, B. E., O’Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In Proc. Symp. Comp. Anim. 2005, 255–259. Google ScholarDigital Library
    18. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    19. Franklin, J. D., and Lee, J. S. 2010. A high quality interpolation method for colocated polyhedral/polygonal control volume methods. Computers & Fluids 39, 6, 1012–1021.Google Scholar
    20. Garland, M., and Heckbert, P. 1997. Surface simplification using quadric error metrics. In Proc. SIGGRAPH ’97, 209–216. Google ScholarDigital Library
    21. Glimm, J., Grove, J. W., Li, X. L., Shyue, K.-m., Zeng, Y., and Zhang, Q. 1998. Three-dimensional front tracking. SIAM J. Sci. Comput. 19, 3, 703–727. Google ScholarDigital Library
    22. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3, 463–468. Google ScholarDigital Library
    23. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 973–981. Google ScholarDigital Library
    24. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Computer Graphics Forum 22, 3, 253–262.Google ScholarCross Ref
    25. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 915–920. Google ScholarDigital Library
    26. Hong, J.-M., Shinar, T., Kang, M., and Fedkiw, R. 2007. On boundary condition capturing for multiphase interfaces. J. Sci. Comput. 31, 1–2, 99–125. Google ScholarDigital Library
    27. Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2, 612–625. Google ScholarDigital Library
    28. Kim, D., Song, O.-y., and Ko, H.-S. 2009. Stretching and wiggling liquids. Proc. SIGGRAPH Asia 2009, 120. Google ScholarDigital Library
    29. Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 820–825. Google ScholarDigital Library
    30. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 812–819. Google ScholarDigital Library
    31. Meyer, M., Barr, A., Lee, H., and Desbrun, M. 2002. Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7, 1, 13–22. Google ScholarDigital Library
    32. Meyer, M., Desbrun, M., Schroder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In VisMath.Google Scholar
    33. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini, M. Y. 2006. Physics based boiling simulation. In Proc. Symp. Comp. Anim. 2006, 317–324. Google ScholarDigital Library
    34. Mullen, P., McKenzie, A., Tong, Y., and Desbrun, M. 2007. A variational approach to Eulerian geometry processing. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3, 66. Google ScholarDigital Library
    35. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In Proc. Symp. Comp. Anim. 2009, 237–245. Google ScholarDigital Library
    36. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3, 52. Google ScholarDigital Library
    37. Perot, B., and Nallapati, R. 2003. A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows. J. Comput. Phys. 184, 1, 192–214. Google ScholarDigital Library
    38. Shin, S. 2007. Computation of the curvature field in numerical simulation of multiphase flow. J. Comput. Phys. 222, 2, 872–878. Google ScholarDigital Library
    39. Si, H. 2006. TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator.Google Scholar
    40. Sin, F., Bargteil, A., and Hodgins, J. 2009. A point-based method for animating incompressible flow. In Proc. Symp. Comp. Anim. 2009, 247–255. Google ScholarDigital Library
    41. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comp. Graph. 11, 3, 317–328. Google ScholarDigital Library
    42. Wendt, J. D., Baxter, W., Oguz, I., and Lin, M. C. 2007. Finite volume flow simulations on arbitrary domains. Graph. Models 69, 1, 19–32. Google ScholarDigital Library
    43. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 47. Google ScholarDigital Library
    44. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3, 76. Google ScholarDigital Library
    45. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Proc. Symp. Comp. Anim. 2006, 325–333. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: