“Manifold bootstrapping for SVBRDF capture” by Dong, Wang, Tong, Snyder, Lan, et al. …

  • ©Yue Dong, Jiaping Wang, Xin Tong, John M. Snyder, Yanxiang Lan, Moshe Ben-Ezra, and Baining Guo




    Manifold bootstrapping for SVBRDF capture



    Manifold bootstrapping is a new method for data-driven modeling of real-world, spatially-varying reflectance, based on the idea that reflectance over a given material sample forms a low-dimensional manifold. It provides a high-resolution result in both the spatial and angular domains by decomposing reflectance measurement into two lower-dimensional phases. The first acquires representatives of high angular dimension but sampled sparsely over the surface, while the second acquires keys of low angular dimension but sampled densely over the surface.We develop a hand-held, high-speed BRDF capturing device for phase one measurements. A condenser-based optical setup collects a dense hemisphere of rays emanating from a single point on the target sample as it is manually scanned over it, yielding 10 BRDF point measurements per second. Lighting directions from 6 LEDs are applied at each measurement; these are amplified to a full 4D BRDF using the general (NDF-tabulated) microfacet model. The second phase captures N=20-200 images of the entire sample from a fixed view and lit by a varying area source. We show that the resulting N-dimensional keys capture much of the distance information in the original BRDF space, so that they effectively discriminate among representatives, though they lack sufficient angular detail to reconstruct the SVBRDF by themselves. At each surface position, a local linear combination of a small number of neighboring representatives is computed to match each key, yielding a high-resolution SVBRDF. A quick capture session (10-20 minutes) on simple devices yields results showing sharp and anisotropic specularity and rich spatial detail.


    1. Alldrin, N., Zickler, T. E., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In CVPR, 1–8.Google Scholar
    2. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Siggraph 2000, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 65–74. Google ScholarDigital Library
    3. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7–24. Google ScholarDigital Library
    4. Dana, K. J., Nayar, S. K., van Ginneken, B., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1, 1–34. Google ScholarDigital Library
    5. Dana, K. J. 2001. BRDF/BTF measurement device. In Proceedings of eighth IEEE international conference on computer vision (ICCV), vol. 2, 460–466.Google ScholarCross Ref
    6. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH, 369–378. Google ScholarDigital Library
    7. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH 2000, 145–156. Google ScholarDigital Library
    8. Debevec, P., Tchou, C., Gardner, A., Hawkins, T., Poullis, C., Stumpfel, J., Jones, A., Yun, N., Einarsson, P., Lundgren, T., Fajardo, M., and Martinez, P. 2004. Estimating surface reflectance properties of a complex scene under captured natural illumination. Technical report ICT-TR-06, University of Southern California Institute for Creative Technologies Graphics Laboratory.Google Scholar
    9. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749–758. Google ScholarDigital Library
    10. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: exploiting data-sparseness in reflectance fields. In Eurographics Workshop/ Symposium on Rendering, Eurographics Association, Nicosia, Cyprus, 251–262. Google ScholarDigital Library
    11. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In ICCV, I: 341–348. Google ScholarDigital Library
    12. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741–748. Google ScholarDigital Library
    13. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July). Google ScholarDigital Library
    14. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transaction on Graphics 22, 2 (Apr.), 234–257. Google ScholarDigital Library
    15. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties bidirectional reflectance distribution functions of velvet. Applied Optics 37, 25 (Sept.), 5974–5984.Google ScholarCross Ref
    16. Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-based BRDF measurement including human skin. In 10th Eurographics Rendering Workshop. Google ScholarDigital Library
    17. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3, 759–769. Google ScholarDigital Library
    18. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. Efficient isotropic BRDF measurement. In EGRW ’03: Proceedings of the 14th Eurographics Workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 241–247. Google ScholarDigital Library
    19. McAllister, D. K., Lastra, A. A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of the 17th Eurographics/SIGGRAPH Workshop on Graphics Hardware (EGGH-02), ACM Press, New York, S. N. Spencer, Ed., 79–88. Google ScholarDigital Library
    20. Moshe, B.-E., Wang, J., Bennett, W., Li, X., and Ma, L. 2008. An LED-only BRDF measurement device. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1–8.Google Scholar
    21. Mount, D., and Arya, S. 1997. Ann: A library for approximate nearest neighbor searching. In CGC 2nd Annual Fall Workshop on Computational Geometry.Google Scholar
    22. Mukaigawa, Y., sumino, K., and yagi, Y. 2007. High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In Proc. of Asian Conference on Computer Vision (ACCV2007), LNCS-4844, 246–257. Google ScholarDigital Library
    23. Muller, G., Meseth, J., Sattler, M., Sarlette, R., and Klein, R. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. Computer Graphics Forum 24, 1, 83–109.Google ScholarCross Ref
    24. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005, 117C226.Google Scholar
    25. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US).Google Scholar
    26. Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. In Science, 2323–2326.Google Scholar
    27. Schuster, W. 2001. Harmonische interpolation. In Math. Semesterber, Springer-Verlag, 1–27.Google Scholar
    28. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. J. Graph. Tools 2, 3, 45–52. Google ScholarDigital Library
    29. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1–9. Google ScholarDigital Library
    30. Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel nyström method for light transport. ACM Trans. Graph. 28, 3, 29:1–29:10. Google ScholarDigital Library
    31. Weistroffer, R. P., Walcott, K. R., Humphreys, G., and Lawrence, J. 2007. Efficient basis decomposition for scattered reflectance data. In EGSR07: Proceedings of the Eurographics Symposium on Rendering. Google ScholarDigital Library
    32. Weyrich, T. 2006. Acquisition of human faces using a measurement-based skin reflectance model. PhD thesis, Department of Computer Science, ETH Zurich.Google Scholar
    33. Zhang, Z. 2000. A flexible new technique for camera calibration. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, 1330–1334. Google ScholarDigital Library
    34. Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: image-based rendering from a sparse set of images. In Eurographics Symposium on Rendering, Eurographics Association, Konstanz, Germany, K. Bala and P. Dutré, Eds., 253–264. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: