“Light warping for enhanced surface depiction” by Vergne, Pacanowski, Barla, Granier and Schlick

  • ©Romain Vergne, Romain Pacanowski, Pascal Barla, Xavier Granier, and Christophe Schlick

Conference:


Type:


Title:

    Light warping for enhanced surface depiction

Presenter(s)/Author(s):



Abstract:


    Recent research on the human visual system shows that our perception of object shape relies in part on compression and stretching of the reflected lighting environment onto its surface. We use this property to enhance the shape depiction of 3D objects by locally warping the environment lighting around main surface features. Contrary to previous work, which require specific illumination, material characteristics and/or stylization choices, our approach enhances surface shape without impairing the desired appearance.Thanks to our novel local shape descriptor, salient surface features are explicitly extracted in a view-dependent fashion at various scales without the need of any pre-process. We demonstrate our system on a variety of rendering settings, using object materials ranging from diffuse to glossy, to mirror or refractive, with direct or global illumination, and providing styles that range from photorealistic to non-photorealistic. The warping itself is very fast to compute on modern graphics hardware, enabling real-time performance in direct illumination scenarios.Note: Third-Party Material Attribution Third-party material used in ACM Transactions on Graphics 28(3), Article 25 – “Light Warping for Enhanced Surface Depiction,” by Vergne, Pacanowski, Barla, Granier, and Schlick – was used without proper attribution.The 3D model used in Figures 1, 3, and 5, as well as in the cover image of this volume of the journal, was downloaded from the Shape Repository of [email protected] Project (http://shapes.aimatshape.net) and is the property of CNR-IMATI.We regret this oversight.

References:


    1. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proc. ACM SIGGRAPH ’00, ACM, 65–74. Google ScholarDigital Library
    2. Cignoni, P., Scopigno, R., and Tarini, M. 2005. A simple Normal Enhancement technique for Interactive Non-photorealistic Renderings. Comp. & Graph. 29, 1, 125–133. Google ScholarDigital Library
    3. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S., Finkelstein, A., Funkhouser, T., and Rusinkiewicz, S. 2008. Where Do People Draw Lines? ACM Trans. Graph. (Proc. SIGGRAPH 2008) 27, 3, 1–11. Google ScholarDigital Library
    4. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella, A. 2003. Suggestive Contours for Conveying Shape. ACM Trans. Graph. (Proc. SIGGRAPH 2003) 22, 3 (July), 848–855. Google ScholarDigital Library
    5. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination (Second Edition). A. K. Peters, Ltd. Google ScholarDigital Library
    6. Fleming, R. W., Torralba, A., and Adelson, E. H. 2004. Specular reflections and the perception of shape. J. Vis. 4, 9 (9), 798–820.Google ScholarCross Ref
    7. Fleming, R. W., Torralba, A., and Adelson, E. H. 2009. Three dimensional shape perception. Springer Verlag, ch. Shape from sheen. to appear.Google Scholar
    8. Gooch, A., Gooch, B., Shirley, P., and Cohen, E. 1998. A Non-Photorealistic Lighting Model For Automatic Technical Illustration. In Proc. ACM SIGGRAPH ’98, ACM, 447–452. Google ScholarDigital Library
    9. Goodwin, T., Vollick, I., and Hertzmann, A. 2007. Isophote distance: a shading approach to artistic stroke thickness. In NPAR ’07: Proc. international symposium on Non-photorealistic animation and rendering, ACM, 53–62. Google ScholarDigital Library
    10. Ho, Y.-X., Landy, M. S., and Maloney, L. T. 2006. How direction of illumination affects visually perceived surface roughness. J. Vis. 6, 5 (5), 634–648.Google ScholarCross Ref
    11. Hodges, E. R. S. 2003. The Guild Handbook of Scientific Illustration. Wiley.Google Scholar
    12. Hogarth, B. 1991. Dynamic Light and Shade. Watson Guptill.Google Scholar
    13. Judd, T., Durand, F., and Adelson, E. H. 2007. Apparent Ridges for Line Drawing. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3, 19. Google ScholarDigital Library
    14. Kindlmann, G., Whitaker, R., Tasdizen, T., and Möller, T. 2003. Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications. In Proc. IEEE Visualization 2003, 513–520. Google ScholarDigital Library
    15. Kolomenkin, M., Shimshoni, I., and Tal, A. 2008. Demarcating Curves for Shape Illustration. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2008) 27, 5, 1–9. Google ScholarDigital Library
    16. Krivánek, J., and Colbert, M. 2008. Real-time shading with filtered importance sampling. Comp. Graph. Forum (Proc. EUROGRAPHICS Symposium on Rendering 2008) 27, 4. Google ScholarDigital Library
    17. Langer, M., and Bülthoff, H. H. 1999. Perception of shape from shading on a cloudy day. Tech. Rep. 73, Tübingen, Germany, oct.Google Scholar
    18. Lee, C. H., Hao, X., and Varshney, A. 2006. Geometry-dependent lighting. IEEE Transactions on Visualization and Computer Graphics 12, 2, 197–207. Google ScholarDigital Library
    19. Lee, Y., Markosian, L., Lee, S., and Hughes, J. F. 2007. Line drawings via abstracted shading. ACM Trans. Graph. 26, 3, 18. Google ScholarDigital Library
    20. Miller, G. 1994. Efficient Algorithms for Local and Global Accessibility Shading. In Proc. ACM SIGGRAPH ’94, ACM, 319–326. Google ScholarDigital Library
    21. Nienhaus, M., and Döllner, J. 2004. Blueprints: illustrating architecture and technical parts using hardware-accelerated non-photorealistic rendering. In Graphics Interface (GI’04), Canadian Human-Computer Communications Society, 49–56. Google ScholarDigital Library
    22. Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2004. Ridgevalley lines on meshes via implicit surface fitting. ACM Trans. Graph. (Proc. SIGGRAPH 2004) 3, 23, 609–612. Google ScholarDigital Library
    23. Ostrovsky, Y., Cavanagh, P., and Sinha, P. 2001. Perceiving Illumination Inconsistencies in Scenes. In MIT AIM.Google Scholar
    24. Perona, P., and Malik, J. 1990. Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (July), 629–639. Google ScholarDigital Library
    25. Pharr, M., and Green, S. 2004. GPU Gems. Addison-Wesley, ch. Ambient Occlusion.Google Scholar
    26. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A First-Order Analysis of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1, 2. Google ScholarDigital Library
    27. Ritschel, T., Smith, K., Ihrke, M., Grosch, T., Myszkowski, K., and Seidel, H.-P. 2008. 3D Unsharp Masking for Scene Coherent Enhancement. ACM Trans. Graph. (Proc. SIGGRAPH 2008) 27, 3, 1–8. Google ScholarDigital Library
    28. Rusinkiewicz, S., Burns, M., and Decarlo, D. 2006. Exaggerated Shading for Depicting Shape and Detail. ACM Trans. Graph. (Proc. SIGGRAPH 2006) 25, 3, 1199–1205. Google ScholarDigital Library
    29. Saito, T., and Takahashi, T. 1990. Comprehensible Rendering of 3-D Shapes. In Proc. ACM SIGGRAPH ’90, ACM, 197–206. Google ScholarDigital Library
    30. Tarr, M. J., Kersten, D., and Bülthoff, H. H. 1998. Why the visual recognition system might encode the effects of illumination. Vision Reseach 28, 2259–2275.Google ScholarCross Ref
    31. Toler-Franklin, C., Finkelstein, A., and Rusinkiewicz, S. 2007. Illustration of Complex Real-World Objects using Images with Normals. In NPAR ’07: Proc. international symposium on Non-photorealistic animation and rendering, ACM, 111–119. Google ScholarDigital Library
    32. Vergne, R., Barla, P., Granier, X., and Schlick, C. 2008. Apparent relief: a shape descriptor for stylized shading. In NPAR ’08: Proc. international symposium on Non-photorealistic animation and rendering, ACM, 23–29. Google ScholarDigital Library
    33. Winnemöller, H., Olsen, S. C., and Gooch, B. 2006. Real-time video abstraction. ACM Trans. Graph. (Proc. SIGGRAPH 2006) 25, 3, 1221–1226. Google ScholarDigital Library
    34. Wood, P. 1994. Scientific Illustration: A Guide to Biological, Zoological, and Medical Rendering Techniques, Design, Printing, and Display, 2nd ed. John Wiley and Sons, Inc., New York.Google Scholar
    35. Zhang, L., He, Y., Xie, X., and Chen, W. 2009. Laplacian Lines for Real Time Shape Illustration. In I3D ’09: Proc. symposium on Interactive 3D graphics and games, ACM. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: