“Interactive shape modeling using a skeleton-mesh co-representation” by BÆrentzen, Abdrashitov and Singh

  • ©

Conference:


Type(s):


Title:

    Interactive shape modeling using a skeleton-mesh co-representation

Session/Category Title:   Interactive Modeling


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of a shape is uniquely embedded in the mesh connectivity of a PAM, enabling both surface and skeletal modeling operations, interchangeably and directly on the mesh itself. We develop an algorithm to convert arbitrary triangle meshes into PAMs as well as techniques to simplify PAMs and a method to convert a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models.

References:


    1. Andrews, J., Jin, H., and Séquin, C. 2012. Interactive inverse 3d modeling. Computer-Aided Design and Applications 9, 6, 881–900.Google ScholarCross Ref
    2. Attene, M., Biasotti, S., and Spagnuolo, M. 2003. Shape understanding by contour-driven retiling. The Visual Computer 19, 2, 127–138.Google ScholarCross Ref
    3. Bae, S.-H., Balakrishnan, R., and Singh, K. 2008. Ilovesketch: as-natural-as-possible sketching system for creating 3d curve models. In Proceedings of the 21st annual ACM symposium on User interface software and technology, ACM, 151–160. Google ScholarDigital Library
    4. Bærentzen, J. A., Misztal, M. K., and Wełnicka, K. 2012. Converting skeletal structures to quad dominant meshes. Computers & Graphics 36, 5, 555–561. Google ScholarDigital Library
    5. Banchoff, T. F. 1970. Critical points and curvature for embedded polyhedral surfaces. The American Mathematical Monthly 77, 5, 475–485.Google ScholarCross Ref
    6. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Transactions on Graphics 26, 3, 72:1–72:8. Google ScholarDigital Library
    7. Bessmeltsev, M., Wang, C., Sheffer, A., and Singh, K. 2012. Design-driven quadrangulation of closed 3d curves. ACM Trans. Graph. 31, 6 (Nov.), 178:1–178:11. Google ScholarDigital Library
    8. Biasotti, S., Falcidieno, B., and Spagnuolo, M. 2000. Extended reeb graphs for surface understanding and description. In Discrete Geometry for Computer Imagery, G. Borgefors, I. Nyström, and G. Baja, Eds., vol. 1953 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 185–197. Google ScholarDigital Library
    9. Biasotti, S., Giorgi, D., Spagnuolo, M., and Falcidieno, B. 2008. Reeb graphs for shape analysis and applications. Theoretical Computer Science 392, 1, 5–22. Google ScholarDigital Library
    10. Bloomenthal, J., and Wyvill, B., Eds. 1997. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarDigital Library
    11. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Computer Graphics Forum 30, 2, 375–384.Google ScholarCross Ref
    12. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., and Zorin, D. 2013. Quad-mesh generation and processing: A survey. Computer Graphics Forum 32, 6, 51–76.Google ScholarDigital Library
    13. Borosán, P., Jin, M., DeCarlo, D., Gingold, Y., and Nealen, A. 2012. Rigmesh: automatic rigging for part-based shape modeling and deformation. ACM Transactions on Graphics (TOG) 31, 6, 198:1–198:9. Google ScholarDigital Library
    14. Catmull, E., and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topological meshes. Computer-aided design 10, 6, 350–355.Google Scholar
    15. Chaudhuri, S., Kalogerakis, E., Giguere, S., and Funkhouser, T. 2013. AttribIt: Content creation with semantic attributes. In Proc. UIST, ACM. Google ScholarDigital Library
    16. Daniels, J., Silva, C. T., Shepherd, J., and Cohen, E. 2008. Quadrilateral mesh simplification. ACM Transactions on Graphics 27, 5, 148:1–148:9. Google ScholarDigital Library
    17. Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer aided geometric design 22, 5, 392–423. Google ScholarDigital Library
    18. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19–27. Google ScholarDigital Library
    19. Galyean, T. A., and Hughes, J. F. 1991. Sculpting: An interactive volumetric modeling technique. Computer Graphics 25, 4 (jul), 267–274. Google ScholarDigital Library
    20. Gebal, K., Bærentzen, J. A., Aanæs, H., and Larsen, R. 2009. Shape analysis using the auto diffusion function. Computer Graphics Forum 28, 5, 1405–1413. Google ScholarDigital Library
    21. Igarashi, T., Matsuoka, S., and Tanaka, H. 2007. Teddy: a sketching interface for 3d freeform design. In ACM SIGGRAPH 2007 courses, ACM, 21. Google ScholarDigital Library
    22. Isenburg, M., Gumhold, S., and Gotsman, C. 2001. Connectivity shapes. In Proceedings of the conference on Visualization’01, IEEE Computer Society, 135–142. Google ScholarDigital Library
    23. Ji, Z., Liu, L., and Wang, Y. 2010. B-mesh: A modeling system for base meshes of 3d articulated shapes. Computer Graphics Forum 29, 7, 2169–2177.Google ScholarCross Ref
    24. Kettner, L. 1998. Designing a data structure for polyhedral surfaces. In Proceedings 14th Annual Symposium on Computational Geometry, ACM, 146–154. Google ScholarDigital Library
    25. Krishnamurthy, V., and Levoy, M. 1996. Fitting smooth surfaces to dense polygon meshes. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’96, ACM, 313–324. Google ScholarDigital Library
    26. Melvær, E. L., and Reimers, M. 2012. Geodesic polar coordinates on polygonal meshes. Computer Graphics Forum 31, 8, 2423–2435. Google ScholarDigital Library
    27. Milnor, J. W. 1963. Morse Theory. Princeton university press.Google Scholar
    28. Myles, A., and Peters, J. 2009. Bi-3 c 2 polar subdivision. ACM Transactions on Graphics 28, 3, 1–12. Google ScholarDigital Library
    29. Ni, X., Garland, M., and Hart, J. C. 2004. Fair morse functions for extracting the topological structure of a surface mesh. ACM Transactions on Graphics 23, 3, 613–622. Google ScholarDigital Library
    30. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1, 15–36.Google Scholar
    31. Pixologic, 2010. Zbrush.Google Scholar
    32. Schmidt, R., and Singh, K. 2010. Meshmixer: An interface for rapid mesh composition. In ACM SIGGRAPH 2010 Talks. Google ScholarDigital Library
    33. Singh, K., and Fiume, E. 1998. Wires: A geometric deformation technique. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’98), ACM, 405–414. Google ScholarDigital Library
    34. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP ’07, Eurographics, 109–116. Google ScholarDigital Library
    35. Srinivasan, V., Mandal, E., and Akleman, E. 2005. Solidifying wireframes. In Proceedings of the 2004 bridges conference on mathematical connections in art, music, and science. Banf, Alberta, Canada.Google Scholar
    36. Stãnculescu, L., Chaine, R., Cani, M.-P., and Singh, K. 2013. Sculpting multi-dimensional nested structures. Computers & Graphics 37, 6, 753–763. Google ScholarDigital Library
    37. Sun, Q., Lin, J., Fu, C.-W., Kaijima, S., and He, Y. 2013. A multi-touch interface for fast architectural sketching and massing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 247–256. Google ScholarDigital Library
    38. Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T., and Sorkine, O. 2011. Geobrush: Interactive mesh geometry cloning. Computer Graphics Forum (proceedings of Eurographics) 30, 2, 613–622.Google Scholar
    39. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32, 4 (July), 97:1–97:8. Google ScholarDigital Library
    40. Thiery, J.-M., Guy, E., and Boubekeur, T. 2013. Sphere-meshes: Shape approximation using spherical quadric error metrics. ACM Transaction on Graphics (Proc. SIGGRAPH Asia 2013) 32, 6, 178:1–178:12. Google ScholarDigital Library
    41. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. 2013. Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph. 32, 4 (July), 125:1–125:12. Google ScholarDigital Library
    42. Warren, J., and Schaefer, S. 2004. A factored approach to subdivision surfaces. Computer Graphics and Applications, IEEE 24, 3, 74–81. Google ScholarDigital Library
    43. Zanni, C., Bernhardt, A., Quiblier, M., and Cani, M.-P. 2013. Scale-invariant integral surfaces. Computer Graphics Forum 32, 8, 219–232.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: