“Interactive cutaway illustrations of complex 3D models” by Li, Ritter, Agrawala, Curless and Salesin

  • ©Wilmot Li, Lincoln Ritter, Maneesh Agrawala, Brian Curless, and David H. Salesin

Conference:


Type:


Title:

    Interactive cutaway illustrations of complex 3D models

Presenter(s)/Author(s):



Abstract:


    We present a system for authoring and viewing interactive cutaway illustrations of complex 3D models using conventions of traditional scientific and technical illustration. Our approach is based on the two key ideas that 1) cuts should respect the geometry of the parts being cut, and 2) cutaway illustrations should support interactive exploration. In our approach, an author instruments a 3D model with auxiliary parameters, which we call “rigging,” that define how cutaways of that structure are formed. We provide an authoring interface that automates most of the rigging process. We also provide a viewing interface that allows viewers to explore rigged models using high-level interactions. In particular, the viewer can just select a set of target structures, and the system will automatically generate a cutaway illustration that exposes those parts. We have tested our system on a variety of CAD and anatomical models, and our results demonstrate that our approach can be used to create and view effective interactive cutaway illustrations for a variety of complex objects with little user effort.

References:


    1. A.D.A.M. Inc., 2005. A.D.A.M. Interactive Anatomy.Google Scholar
    2. Agur, A. M. R., and Lee, M. J. 2003. Grant’s Atlas of Anatomy. Lippincott Williams and Wilkins.Google Scholar
    3. Akers, D., Losasso, F., Klingner, J., Agrawala, M., Rick, J., and Hanrahan, P. 2003. Conveying shape and features with image-based relighting. In Proceedings of IEEE Visualization 2003, 349–354. Google ScholarDigital Library
    4. Ali, K., Hartmann, K., and Strothotte, T. 2005. Label layout for interactive 3d illustrations. In WSCG (Journal Papers), 1–8.Google Scholar
    5. Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose, T. 1993. Toolglass and magic lenses: The see-through interface. In Proceedings of ACM SIGGRAPH 93, 73–80. Google ScholarDigital Library
    6. Biesty, S., and Platt, R. 1992. Stephen Biesty’s Incredible Cross-sections. Dorling Kindersley.Google Scholar
    7. Biesty, S., and Platt, R. 1993. Man-of-war. Dorling Kindersley.Google Scholar
    8. Bruckner, S., and Gröller, M. E. 2005. Volumeshop: An interactive system for direct volume illustration. In Proceedings of IEEE Visualization 2005, 671–678.Google Scholar
    9. Bruckner, S., and Groller, M. 2006. Exploded views for volume data. IEEE Transactions on Visualization and Computer Graphics 12, 5 (Sept./Oct.), 1077–1084. Google ScholarDigital Library
    10. Bruyns, C., Senger, S., Menon, A., Montgomery, K., Wildermuth, S., and Boyle, R. 2002. A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh cutting using virtual tools. Journal of Visualization and Computer Animation 13, 1, 21–42.Google ScholarCross Ref
    11. Burns, M., Klawe, J., Rusinkiewicz, S., Finkelstein, A., and DeCarlo, D. 2005. Line drawings from volume data. ACM Transactions on Graphics 24, 3 (Aug.), 512–518. Google ScholarDigital Library
    12. Cignoni, P., Scopigno, R., and Tarini, M. 2005. A simple normal enhancement technique for interactive non-photorealistic renderings. Computer & Graphics 29, 1 (Feb), 125–133. Google ScholarDigital Library
    13. Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., and Santella, A. 2006. Directing gaze in 3d models with stylized focus. In Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, 377–388. Google ScholarCross Ref
    14. Correa, C., Silver, D., and Chen, M. 2006. Feature aligned volume manipulation for illustration and visualization. IEEE Transactions on Visualization and Computer Graphics 12, 5 (Sept./Oct.), 1069–1076. Google ScholarDigital Library
    15. Diepstraten, J., Weiskopf, D., and Ertl, T. 2003. Interactive cutaway illustrations. Computer Graphics Forum 22, 3 (Sept.), 523–532.Google ScholarCross Ref
    16. Dooley, D., and Cohen, M. 1990. Automatic illustration of 3d geometric models: Lines. In 1990 Symposium on Interactive 3D Graphics, 77–82. Google ScholarDigital Library
    17. Ebert, D., and Rheingans, P. 2000. Volume illustration: Non-photorealistic rendering of volume models. In Proceedings of IEEE Visualization 2000, 195–202. Google ScholarDigital Library
    18. Elliott, B. G., Consoliver, E. L., and Hobbs, G. W. 1924. The Gasoline Automobile. Mcgraw-Hill.Google Scholar
    19. Feiner, S., and Seligmann, D. D. 1992. Cutaways and ghosting: Satisfying visibility constraints in dynamic 3d illustrations. The Visual Computer, 292–302.Google Scholar
    20. Francis, G. 1987. A Topological Picturebook. Springer.Google Scholar
    21. Gooch, A., Gooch, B., Shirley, P. S., and Cohen, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Proceedings of ACM SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 447–452. Google ScholarDigital Library
    22. Hodges, E. R. S. 1989. The Guild Handbook of Scientific Illustration. Van Nostrand Reinhold.Google Scholar
    23. Höhne, K. H., Bomans, M., Riemer, M., Schubert, R., Tiede, U., and Lierse, W. 1992. A 3d anatomical atlas based on a volume model. IEEE Computer Graphics and Applications 12, 4, 72–78. Google ScholarDigital Library
    24. Höhne, K. H., Pflesser, B., Pommert, A., Priesmeyer, K., Riemer, M., Schiemann, T., Schubert, R., Tiede, U., Frederking, H., Gehrmann, S., Noster, S., and Schumacher, U., 2003. VOXEL-MAN 3D Navigator; Inner Organs. Regional, Systemic and Radiological Anatomy.Google Scholar
    25. Hoyt, W. A. 1981. Complete Car Care Manual. Reader’s Digest Association.Google Scholar
    26. Igarashi, T., Matsuoka, S., and Tanaka, H. 1999. Teddy: A sketching interface for 3d freeform design. In Proceedings of ACM SIGGRAPH 99, 409–416. Google ScholarDigital Library
    27. Kirsch, F., and Döllner, J. 2005. OpenCSG: A library for image-based CSG rendering. In Proceedings of USENIX 05, 129–140. Google ScholarDigital Library
    28. LaMar, E., Hamann, B., and Joy, K. I. 2001. A magnification lens for interactive volume visualization. In 9th Pacific Conference on Computer Graphics and Applications, 223–232. Google ScholarDigital Library
    29. Lee, C. H., Hao, X., and Varshney, A. 2004. Light collages: Lighting design for effective visualization. In Proceedings of IEEE Visualization 2004, 281–288. Google ScholarDigital Library
    30. Loechel, W. E. 1964. Medical Illustration: A Guide for the Doctor-Autor and Exhibitor. C. C. Thomas.Google Scholar
    31. Luft, T., Colditz, C., and Deussen, O. 2006. Image enhancement by unsharp masking the depth buffer. ACM Transactions on Graphics 25, 3 (July), 1206–1213. Google ScholarDigital Library
    32. Lum, E. B., and Ma, K.-L. 2002. Hardware-accelerated parallel non-photorealistic volume rendering. In Proceedings of NPAR 02, 67–74. Google ScholarDigital Library
    33. McGuffin, M. J., Tancau, L., and Balakrishnan, R. 2003. Using deformations for browsing volumetric data. In Proceedings of IEEE Visualization 2003, 401–408. Google ScholarDigital Library
    34. Netter, F. H. 1989. Atlas of Human Anatomy, 3rd ed. Icon Learning Systems.Google Scholar
    35. Owada, S., Nielsen, F., Nakazawa, K., and Igarashi, T. 2003. A sketching interface for modeling the internal structures of 3d shapes. In Smart Graphics 2003, Lecture Notes in Computer Science (LNCS), vol. 2733, 49–57. Google ScholarDigital Library
    36. Owada, S., Nielsen, F., Okabe, M., and Igarashi, T. 2004. Volumetric illustration: designing 3d models with internal textures. ACM Transactions on Graphics 23, 3 (Aug.), 322–328. Google ScholarDigital Library
    37. Rusinkiewicz, S., Burns, M., and DeCarlo, D. 2006. Exaggerated shading for depicting shape and detail. ACM Transactions on Graphics 25, 3 (July), 1199–1205. Google ScholarDigital Library
    38. Tietjen, C., Isenberg, T., and Preim, B. 2005. Combining silhouettes, shading, and volume rendering for surgery education and planning. In Proceedings of IEEE/Eurgraphics Symposium on Visualization 2005, 303–310. Google ScholarCross Ref
    39. Verroust, A., and Lazarus, F. 2000. Extracting skeletal curves from 3d scattered data. The Visual Computer 16, 1, 15–25.Google ScholarDigital Library
    40. Viega, J., Conway, M. J., Williams, G., and Pausch, R. 1996. 3d magic lenses. In Proceedings of UIST 96, 51–58. Google ScholarDigital Library
    41. Viola, I., Gröller, E., Bühler, K., Hadwiger, M., Preim, B., and Ebert, D., 2005. Eurographics tutorial on illustrative visualization.Google Scholar
    42. Viola, I., Kanitsar, A., and Gröller, E. 2005. Importance-driven feature enhancement in volume visualization. IEEE Transactions on Visualization and Computer Graphics 11, 4, 408–418. Google ScholarDigital Library
    43. Wang, L., Zhao, Y., Mueller, K., and Kaufman, A. E. 2005. The magic volume lens: An interactive focus+context technique for volume rendering. In Proceedings of IEEE Visualization 2005, 367–374.Google Scholar
    44. Wood, P. 1979. Scientific Illustration: A Guide to Biological, Zoological, and Medical Rendering Techniques, Design, Printing, and Display. Van Nostrand Reinhold.Google Scholar
    45. Zweifel, F. W. 1961. A Handbook of Biological Illustration. University of Chicago Press.Google Scholar


ACM Digital Library Publication:



Overview Page: