“Inter-surface mapping” by Schreiner, Asirvatham, Praun and Hoppe

  • ©John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe




    Inter-surface mapping



    We consider the problem of creating a map between two arbitrary triangle meshes. Whereas previous approaches compose parametrizations over a simpler intermediate domain, we directly create and optimize a continuous map between the meshes. Map distortion is measured with a new symmetric metric, and is minimized during interleaved coarse-to-fine refinement of both meshes. By explicitly favoring low inter-surface distortion, we obtain maps that naturally align corresponding shape elements. Typically, the user need only specify a handful of feature correspondences for initial registration, and even these constraints can be removed during optimization. Our method robustly satisfies hard constraints if desired. Inter-surface mapping is shown using geometric and attribute morphs. Our general framework can also be applied to parametrize surfaces onto simplicial domains, such as coarse meshes (for semi-regular remeshing), and octahedron and toroidal domains (for geometry image remeshing). In these settings, we obtain better parametrizations than with previous specialized techniques, thanks to our fine-grain optimization.


    1. AKSOYLU, B., KHODAKOVSKY, A., AND SCHRÖDER, P. 2003. Multilevel solvers for unstructured surface meshes. SIAM J. Sci. Comput. Google ScholarDigital Library
    2. ALEXA, M. 2002. Recent advances in mesh morphing. Computer Graphics Forum, 21(2), 173–196.Google ScholarCross Ref
    3. DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic parameterizations of surface meshes. Computer Graphics Forum, 17(2), 167–174.Google Scholar
    4. ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUETZLE, W. 1995. Multiresolution analysis of arbitrary meshes. ACM SIGGRAPH, 173–182. Google ScholarDigital Library
    5. FLOATER, M. 2003. Mean value coordinates. CAGD, 20(1), 19–27. Google ScholarDigital Library
    6. FLOATER, M., AND HORMANN, K. 2003. Recent advances in surface parameterization. Multiresolution in Geometric Modeling Workshop.Google Scholar
    7. GOTSMAN, C., GU, X., AND SHEFFER, A. 2003. Fundamentals of spherical parameterization for 3D meshes. ACM SIGGRAPH, 358–363. Google ScholarDigital Library
    8. GU, X., GORTLER, S. J., HOPPE, H. 2002. Geometry images. ACM SIGGRAPH, 355–361. Google ScholarDigital Library
    9. GU, X., YAU, S. 2003. Global conformal surface parameterization. Symposium on Geometry Processing, 127–137. Google ScholarDigital Library
    10. GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P. 2000. Normal meshes. ACM SIGGRAPH, 95–102. Google ScholarDigital Library
    11. HAKER, S., ANGENENT, S., TANNENBAUM, S., KIKINIS, R., SAPIRO, G., AND HALLE, M. 2000. Conformal surface parametrization for texture mapping. IEEE TVCG, 6(2), 181–189. Google ScholarDigital Library
    12. HOPPE, H. 1996. Progressive meshes. ACM SIGGRAPH, 99–108. Google ScholarDigital Library
    13. HORMANN, K., AND GREINER, G. 1999a. MIPS: An efficient global parametrization method. Curve and Surface Design, 153–162.Google Scholar
    14. HORMANN, K., GREINER, G., AND CAMPAGNA, S. 1999b. Hierarchical parametrization of triangulated surfaces. Vision, Modeling, and Visualization, 219–226.Google Scholar
    15. KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P. 2003. Globally smooth parameterizations with low distortion. ACM SIGGRAPH, 350–357. Google ScholarDigital Library
    16. KRAEVOY, V., SHEFFER, A., AND GOTSMAN, C. 2003. Matchmaker: constructing constrained texture maps. ACM SIGGRAPH, 326–333. Google ScholarDigital Library
    17. KRAEVOY, V., AND SHEFFER, A. 2004. Cross-parameterization and compatible remeshing of 3D models. ACM SIGGRAPH. Google ScholarDigital Library
    18. LAZARUS, F., POCCHIOLA, M., VEGTER, G., AND VERROUST, A. 2001. Computing a canonical polygonal schema of an orientable triangulated surface. ACM Symposium on Computational Geometry, 80–89. Google ScholarDigital Library
    19. LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN, D. 1998. MAPS: Multiresolution adaptive parametrization of surfaces. ACM SIGGRAPH, 95–104. Google ScholarDigital Library
    20. LEE, A., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution mesh morphing. ACM SIGGRAPH, 343–350. Google ScholarDigital Library
    21. LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM SIGGRAPH, 362–371. Google ScholarDigital Library
    22. MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive texture mapping. ACM SIGGRAPH, 27–34. Google ScholarDigital Library
    23. PRAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Consistent mesh parametrizations. ACM SIGGRAPH, 179–184. Google ScholarDigital Library
    24. PRAUN, E., AND HOPPE, H. 2003. Spherical parametrization and remeshing. ACM SIGGRAPH, 340–349. Google ScholarDigital Library
    25. SANDER, P., SNYDER, J., GORTLER, S., AND HOPPE, H. 2001. Texture mapping progressive meshes. ACM SIGGRAPH, 409–416. Google ScholarDigital Library
    26. SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H. 2002. Signal-specialized parametrization. Eurographics Workshop on Rendering, 87–100. Google ScholarDigital Library
    27. SHEFFER, A., AND HART, J. 2002. Seamster: Inconspicuous low-distortion texture seam layout. IEEE Visualization, 291–298. Google ScholarDigital Library
    28. SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND LISCHINSKI, D. 2002. Bounded-distortion piecewise mesh parametrization. IEEE Visualization, 355–362. Google ScholarDigital Library
    29. TURK, G. 1992. Re-tiling polygonal surfaces. ACM SIGGRAPH, 55–64. Google ScholarDigital Library

ACM Digital Library Publication: