“Inside fluids: clebsch maps for visualization and processing”

  • ©

Conference:


Type(s):


Title:

    Inside fluids: clebsch maps for visualization and processing

Session/Category Title:   Fluids III


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Clebsch maps encode velocity fields through functions. These functions contain valuable information about the velocity field. For example, closed integral curves of the associated vorticity field are level lines of the vorticity Clebsch map. This makes Clebsch maps useful for visualization and fluid dynamics analysis. Additionally they can be used in the context of simulations to enhance flows through the introduction of subgrid vorticity. In this paper we study spherical Clebsch maps, which are particularly attractive. Elucidating their geometric structure, we show that such maps can be found as minimizers of a non-linear Dirichlet energy. To illustrate our approach we use a number of benchmark problems and apply it to numerically given flow fields. Code and a video can be found in the ACM Digital Library.

References:


    1. Ralph Abraham, Jerrold E. Marsden, and Tudor Ratiu. 2001. Manifolds, Tensor Analysis and Applications. Number 75 in Appl. Math. Sci. Springer.Google Scholar
    2. Alexis Angelidis and Karan Singh. 2007. Kinodynamic Skinning using Volume-Preserving Deformations. In Proc. Symp. Comp. Anim. ACM SIGGRAPH/Eurographics, 129–140.Google Scholar
    3. Vladimir I. Arnold and Boris A. Khesin. 1998. Topological Methods in Hydrodynamics. Springer.Google Scholar
    4. Axel Brandenburg. 2010. Magnetic Field Evolution in Simulations with Euler Potentials. MNRAS 401, 1 (2010), 347–354. Google ScholarCross Ref
    5. Francis P. Bretherton. 1970. A Note on Hamilton’s Principle for Perfect Fluids. J. Fl. Mech. 44, 1 (1970), 19–31. Google ScholarCross Ref
    6. Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-Noise for Procedural Flow. ACM Trans. Graph. 26, 3, Article 46 (2007), 3 pages.Google ScholarDigital Library
    7. Michael A. Bush, Katelyn R. French, and Joseph R. H. Smith. 2017. Total Linking Numbers of Torus Links and Klein Links. RH Underg. Math. J. 15, 1 (2017), 72–92.Google Scholar
    8. Carlos Cartes, Miguel D. Bustamente, and Marc E. Brachet. 2007. Generalized Eulerian-Lagrangian Description of Navier-Stokes Dynamics. Phys. Fluids 19, 7, Article 077101 (2007), 7 pages.Google Scholar
    9. Augustin-Louis Cauchy. 1815. Théorie de la Propagation des Ondes a la Surface d’un Fluide Pesant d’une Profondeur Indéfinie. In Oeuvres Complètes d’Augustin Cauchy. Vol. 1. Imprimerie Royale. Presented to the French Academy in 1815 (publ. 1827).Google Scholar
    10. Albert Chern. 2017. Fluids Dynamics with Incompressible Schrödinger Flow. Ph.D. Dissertation. Caltech.Google Scholar
    11. Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weißmann. 2016. Schrödinger’s Smoke. ACM Trans. Graph. 35, 4, Article 77 (2016), 13 pages.Google ScholarDigital Library
    12. Alfred Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859), 1–10. English translation by David H. Delphenich, http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/clebsch_-_clebsch_variables.pdf.Google ScholarCross Ref
    13. Peter Constantin. 2001a. An Eulerian-Lagrangian Approach for Incompressible Fluids: Local Theory. J. Amer. Math. Soc. 14, 2 (2001), 263–278. Google ScholarCross Ref
    14. Peter Constantin. 2001b. An Eulerian-Lagrangian Approach to the Navier-Stokes Equations. Comm. Math. Phys. 216, 3 (2001), 663–686. Google ScholarCross Ref
    15. Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital Geometry Processing with Discrete Exterior Calculus. In Courses. ACM SIGGRAPH.Google Scholar
    16. David Delphenich. 2017. The Role of Integrability in a large Class of Physical Systems. (March 2017). https://arxiv.org/abs/1210.4976.Google Scholar
    17. Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, Alexander I. Bobenko, Peter Schröder, John M. Sullivan, and Günther M. Ziegler (Eds.). Oberwolfach Seminars, Vol. 38. Birkhäuser Verlag. Google ScholarCross Ref
    18. John A. Ekaterinaris and Lewis B. Schiff. 1990. Vortical Flows over Delta Wings and Numerical Prediction of Vortex Breakdown. In 28th Aerosp. Sc. Meet. AIAA, 90–102. Google ScholarCross Ref
    19. Leonhard Euler. 1757. Continuation des Recherches sur la Théorie due Mouvement des Fluides. Mémoires de l’Académie des Sciences de Berlin (1757), 316–361. Presented to the Berlin Academy in 1755. For an English translation see [Frisch 2008].Google Scholar
    20. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke. In Proc. ACM/SIGGRAPH Conf. ACM, 15–22. Google ScholarDigital Library
    21. Theodore Frankel. 2012. The Geometry of Physics: An Introduction (3rd ed.). Cam. U. P.Google Scholar
    22. Uriel Frisch. 2008. Translation of Leonhard Euler’s: General Principles of the Motion of Fluids. (2008). https://arxiv.org/abs/0802.2383v1.Google Scholar
    23. Uriel Frisch and Barbara Villone. 2014. Cauchy’s almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow. Eu. Phy. J. H 39, 3 (2014), 325–351. Google ScholarCross Ref
    24. Carl Friedrich Gauß. 1833. Zur mathematischen Theorie der elektrodynamischen Wirkungen. Werke, Vol. 5. Königliche Gesellschaft der Wissenschaften, Göttingen, Chapter Handschriftlicher Nachlass. Publ. 1877.Google Scholar
    25. Hanjörg Geiges. 2006. Handbook of Differential Geometry. Vol. 2. North-Holland, Chapter Contact Geometry, 315–382.Google Scholar
    26. C. Robin Graham and Frank S. Henyey. 2000. Clebsch Representation near Points where the Vorticity Vanishes. Phys. Fluids 12, 4 (2000), 744–746. Google ScholarCross Ref
    27. Jacques Hadamard. 1903. Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique. Librairie Scientifique A. Hermann, Paris.Google Scholar
    28. Pengyu He and Yue Yang. 2016. Construction of Initial Vortex-Surface Fields and Clebsch Potentials for Flows with High-Symmetry using First Integrals. Phys. Fluids 28, 3, Article 037101 (2016), 13 pages.Google Scholar
    29. Heinz Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math Ann. 104, 1 (1931), 637–665. Google ScholarCross Ref
    30. John E. Hutchinson. 1991. Computing Conformal Maps and Minimal Surfaces. In Theoretical and Numerical Aspects of Geometric variational Problems (Proc. Cent. Math. and Appl.), Gerd Dziuk, Gerhard Huisken, and John Hutchinson (Eds.), Vol. 26. 140–161.Google Scholar
    31. Jinhee Jeong and Fazle Hussain. 1995. On the Identification of a Vortex. J. Fl. Mech. 285 (1995), 69–94. Google ScholarCross Ref
    32. Ming Jiang, Raghu Machiraju, and David Thompson. 2005. The Visualization Handbook. Elsevier, Chapter Detection and Visualization of Vortices, 295–312.Google Scholar
    33. P. Robert Kotiuga. 1991. Clebsch Potentials and the Visualization of Three-Dimensional Solenoidal Vector Fields. IEEE Trans. Magn. 27, 5 (1991), 3986–3989. Google ScholarCross Ref
    34. Evgenii A. Kuznetsov and Aleksandr V. Mikhailov. 1980. On the Topological meaning of Canonical Clebsch Variables. Phys. Lett. A 77, 1 (1980), 37–38. Google ScholarCross Ref
    35. David W. Lyons. 2003. An Elementary Introduction to the Hopf Fibration. Math. Mag. 76, 2 (2003), 87–98. Google ScholarCross Ref
    36. Nicolas Magot and Alexander Zvonkin. 2000. Belyi Functions for Archimedean Solids. Disc. Math. 217, 1–3 (2000), 249–271.Google ScholarDigital Library
    37. John W. Milnor. 1965. Topology from the Differentiable Viewpoint. U. P. Virginia.Google Scholar
    38. H. Keith Moffatt. 1969. The Degree of Knottedness of Tangled Vortex Lines. J. Fluid Mech. 35, 1 (1969), 117–129. Google ScholarCross Ref
    39. Tobias Pfaff, Nils Thuerey, Jonathan Cohen, Sarah Tariq, and Markus Gross. 2010. Scalable Fluid Simulation using Anisotropic Turbulence Particles. ACM Trans. Graph. 29, 6, Article 174 (2010), 8 pages.Google ScholarDigital Library
    40. Henri Poincaré. 1890. Sur le Problème des Trois Corps et les Équations de la Dynamique. Acta Math. 13 (1890), 1–270.Google Scholar
    41. Yan Ren, Haibo Dong, Xinyan Deng, and Bret Tobalske. 2016. Turning on a Dime: Asymmetric Vortex Formation in Hummingbird Maneuvering Flight. Phys. R. Fl. 1, 5, Article 050511 (2016), 3 pages.Google Scholar
    42. Philip Geoffrey Saffman. 1992. Vortex Dynamics. Cam. U. P.Google Scholar
    43. Jos Stam. 1999. Stable Fluids. In Proc. ACM/SIGGRAPH Conf. ACM, 121–128. Google ScholarDigital Library
    44. Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector Field Based Shape Deformations. ACM Trans. Graph. 25, 3 (2006), 1118–1125. Google ScholarDigital Library
    45. Heinrich Weber. 1868. Ueber eine Transformation der hydrodynamischen Gleichungen. J. Reine Angew. Math. 68 (1868), 286–292. Google ScholarCross Ref
    46. Steffen Weißmann, Ulrich Pinkall, and Peter Schröder. 2014. Smoke Rings from Smoke. ACM Trans. Graph. 33, 4, Article 140 (2014), 8 pages.Google ScholarDigital Library
    47. Peter Woit. 2017. Quantum Theory, Groups and Representations: An Introduction. (Jan. 2017). https://www.math.columbia.edu/~woit/QM/qmbook.pdf.Google Scholar
    48. Lodewijk Woltjer. 1958. A Theorem on Force-Free Magnetic Fields. Proc. Nat. Acad. Sci. 44, 6 (1958), 489–491. Google ScholarCross Ref
    49. Yue Yang and Dale I. Pullin. 2010. On Lagrangian and Vortex-Surface Fields for Flows with Taylor-Green and Kida-Pelz Initial Conditions. J. Fl. Mech. 661 (2010), 446–481. Google ScholarCross Ref
    50. Vladimir E. Zakharov and Evgenii A. Kuznetsov. 1997. Hamiltonian Formalism for Nonlinear Waves. Physics-Uspekhi 40, 11 (1997), 1087–1116. Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: