“Inkjet 4D Print: Self-folding Tessellated Origami Objects by Inkjet UV Printing” by Narumi, Koyama, Suto, Noma, Sato, et al. …

  • ©Koya Narumi, Kazuki Koyama, Kai Suto, Yuta Noma, Hiroki Sato, Tomohiro Tachi, Masaaki Sugimoto, Takeo Igarashi, and Yoshihiro Kawahara

Conference:


Type(s):


Title:

    Inkjet 4D Print: Self-folding Tessellated Origami Objects by Inkjet UV Printing

Session/Category Title:   Fabrication-Oriented Design


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose Inkjet 4D Print, a self-folding fabrication method of 3D origami tessellations by printing 2D patterns on both sides of a heat-shrinkable base sheet, using a commercialized inkjet ultraviolet (UV) printer. Compared to the previous folding-based 4D printing approach using fused deposition modeling (FDM) 3D printers [An et al. 2018], our method has merits in (1) more than 1200 times higher resolution in terms of the number of self-foldable facets, (2) 2.8 times faster printing speed, and (3) optional full-color decoration. This paper describes the material selection, the folding mechanism, the heating condition, and the printing patterns to self-fold both known and freeform tessellations. We also evaluated the self-folding resolution, the printing and transformation speed, and the shape accuracy of our method. Finally, we demonstrated applications enabled by our self-foldable tessellated objects.

References:


    1. Byoungkwon An, Shuhei Miyashita, Aaron Ong, Daniel Aukes, Michael Tolley, Erik Demaine, Martin Demaine, Robert Wood, and Daniela Rus. 2017. An End-to-End Approach to Self-Folding Origami Structures by Uniform Heat. IEEE Transactions on Robotics 34 (11 2017).
    2. Byoungkwon An, Ye Tao, Jianzhe Gu, Tingyu Cheng, Xiang ‘Anthony’ Chen, Xiaoxiao Zhang, Wei Zhao, Youngwook Do, Shigeo Takahashi, Hsiang-Yun Wu, Teng Zhang, and Lining Yao. 2018. Thermorph: Democratizing 4D Printing of Self-Folding Materials and Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12.
    3. ARUP. 2012. Al Bahr Towers. Retrieved September 1, 2022 from https://www.arup.com/projects/al-bahr-towers
    4. Zekun Chang, Tung D. Ta, Koya Narumi, Heeju Kim, Fuminori Okuya, Dongchi Li, Kunihiro Kato, Jie Qi, Yoshinobu Miyamoto, Kazuya Saito, and Yoshihiro Kawahara. 2020. Kirigami Haptic Swatches: Design Methods for Cut-and-Fold Haptic Feedback Mechanisms. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12.
    5. Tian Chen, Julian Panetta, Max Schnaubelt, and Mark Pauly. 2021. Bistable Auxetic Surface Structures. ACM Trans. Graph. 40, 4, Article 39 (jul 2021), 9 pages.
    6. Jianxun Cui, Felipe R. Poblete, and Yong Zhu. 2018. Origami/Kirigami-Guided Morphing of Composite Sheets. Advanced Functional Materials 28, 44 (2018), 1802768. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201802768
    7. Erik D. Demaine and Tomohiro Tachi. 2017. Origamizer: A Practical Algorithm for Folding Any Polyhedron. In 33rd International Symposium on Computational Geometry (SoCG 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 77), Boris Aronov and Matthew J. Katz (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 34:1–34:16.
    8. Levi H. Dudte, Etienne Vouga, Tomohiro Tachi, and Lakshminarayanan Mahadevan. 2016. Programming curvature using origami tessellations. Nature materials 15, 5 (2016), 583–588.
    9. Samuel Felton, Michael Tolley, Erik Demaine, Daniela Rus, and Robert Wood. 2014. A method for building self-folding machines. Science 345, 6197 (2014), 644–646.
    10. Shuzo Fujimoto. 1976. Souzousei wo kaihatsu suru rittai origami. Hyougo-ken Gakkou Kouseikai Tamba Shibu. (Written in Japanese).
    11. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4, Article 66 (jul 2014), 12 pages.
    12. Jianzhe Gu, David E. Breen, Jenny Hu, Lifeng Zhu, Ye Tao, Tyson Van de Zande, Guanyun Wang, Yongjie Jessica Zhang, and Lining Yao. 2019. Geodesy: Self-Rising 2.5D Tiles by Printing along 2D Geodesic Closed Path. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–10.
    13. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4 (2017), 64:1–64:12.
    14. Eiji Iwase and Isao Shimoyama. 2005. Multistep sequential batch assembly of three-dimensional ferromagnetic microstructures with elastic hinges. Journal of Micro-electromechanical Systems 14, 6 (2005), 1265–1271.
    15. David Jourdan, Mélina Skouras, Etienne Vouga, and Adrien Bousseau. 2022. Computational Design of Self-Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric. Computer Graphics Forum 41, 2 (2022), 493–506. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14489
    16. Martin Kilian, Aron Monszpart, and Niloy J. Mitra. 2017. String Actuated Curved Folded Surfaces. ACM Trans. Graph. 36, 3, Article 25 (may 2017), 13 pages.
    17. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 (jul 2016), 11 pages.
    18. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4, Article 106 (jul 2018), 13 pages.
    19. Robert J. Lang. 1997. Origami in Action. St. Martin’s Griffin, New York.
    20. Bin Liu, Jesse L. Silverberg, Arthur A. Evans, Christian D. Santangelo, Robert J. Lang, Thomas C. Hull, and Itai Cohen. 2018. Topological kinematics of origami metamaterials. Nature Physics 14, 8 (2018), 811–815.
    21. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6, Article 241 (dec 2018), 14 pages.
    22. Anton Mikhailov. 2019. Turbo, An Improved Rainbow Colormap for Visualization. Retrieved December 7, 2022 from https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
    23. Koryo MIURA. 1969. Proposition of Pseudo-Cylindrical Concave Polyhedral Shells. ISAS report/Institute of Space and Aeronautical Science,University of Tokyo 34, 9 (11 1969), 141–163. https://cir.nii.ac.jp/crid/1050848249892655232
    24. Koryo Miura. 1970. Proposition of pseudo-cylindrical concave polyhedral shells. In IASS Symposium on Folded Plates and Prismatic Structures (Wien).
    25. Koryo Miura and Robert J Lang. 2009. The science of Miura-ori: A review. Origami 4 (2009), 87–99.
    26. Jun-Hee Na, Arthur A. Evans, Jinhye Bae, Maria C. Chiappelli, Christian D. Santangelo, Robert J. Lang, Thomas C. Hull, and Ryan C. Hayward. 2015. Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers. Advanced Materials 27, 1 (2015), 79–85. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201403510
    27. Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and Mark Pauly. 2021. Computational Inverse Design of Surface-Based Inflatables. ACM Trans. Graph. 40, 4, Article 40 (jul 2021), 14 pages.
    28. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (jul 2019), 15 pages.
    29. Stefan Pillwein, Kurt Leimer, Michael Birsak, and Przemyslaw Musialski. 2020. On Elastic Geodesic Grids and Their Planar to Spatial Deployment. ACM Trans. Graph. 39, 4, Article 125 (aug 2020), 12 pages.
    30. Ron Resch. 1970. The design and analysis of kinematic folded plate systems. In Proceedings of IASS Symposium on Folded Plates and Prismatic Structures, 1970.
    31. Michael L. Rivera, Jack Forman, Scott E. Hudson, and Lining Yao. 2020. Hydrogel-Textile Composites: Actuators for Shape-Changing Interfaces. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–9.
    32. Christian Schüller, Roi Poranne, and Olga Sorkine-Hornung. 2018. Shape Representation by Zippables. ACM Trans. Graph. 37, 4, Article 78 (jul 2018), 13 pages.
    33. Lingyun Sun, Yue Yang, Yu Chen, Jiaji Li, Danli Luo, Haolin Liu, Lining Yao, Ye Tao, and Guanyun Wang. 2021. ShrinCage: 4D Printing Accessories That Self-Adapt. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 433, 12 pages.
    34. Kai Suto, Yuta Noma, Kotaro Tanimichi, Koya Narumi, and Tomohiro Tachi. 2022. Crane: An Integrated Computational Design Platformfor Functional, Foldable, and Fabricable Origami Products. ACM Trans. Comput.-Hum. Interact. (dec 2022).
    35. A Sydney Gladman, Elisabetta A Matsumoto, Ralph G Nuzzo, Lakshminarayanan Mahadevan, and Jennifer A Lewis. 2016. Biomimetic 4D printing. Nature materials 15, 4 (2016), 413–418.
    36. Tomohiro Tachi. 2010a. Freeform Variations of Origami. J. Geom. Graph 14, 2 (2010), 203–215.
    37. Tomohiro Tachi. 2010b. Origamizing Polyhedral Surfaces. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2010), 298–311.
    38. Tomohiro Tachi. 2013. Designing Freeform Origami Tessellations by Generalizing Resch’s Patterns. Journal of Mechanical Design 135, 11 (10 2013).
    39. Ye Tao, Youngwook Do, Humphrey Yang, Yi-Chin Lee, Guanyun Wang, Catherine Mondoa, Jianxun Cui, Wen Wang, and Lining Yao. 2019. Morphlour: Personalized Flour-Based Morphing Food Induced by Dehydration or Hydration Method. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 329–340.
    40. Michael T Tolley, Samuel M Felton, Shuhei Miyashita, Daniel Aukes, Daniela Rus, and Robert J Wood. 2014. Self-folding origami: shape memory composites activated by uniform heating. Smart Materials and Structures 23, 9 (2014), 094006.
    41. Guanyun Wang, Ye Tao, Ozguc Bertug Capunaman, Humphrey Yang, and Lining Yao. 2019. A-Line: 4D Printing Morphing Linear Composite Structures. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 426:1–426:12.
    42. Guanyun Wang, Humphrey Yang, Zeyu Yan, Nurcan Gecer Ulu, Ye Tao, Jianzhe Gu, Levent Burak Kara, and Lining Yao. 2018. 4DMesh: 4D Printing Morphing Non-Developable Mesh Surfaces. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 623–635.
    43. Li-Chen Wang, Wei-Li Song, Ya-Jing Zhang, Mei-Jun Qu, Zeang Zhao, Mingji Chen, Yazheng Yang, Haosen Chen, and Daining Fang. 2020. Active Reconfigurable Tristable Square-Twist Origami. Advanced Functional Materials 30, 13 (2020), 1909087. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909087
    44. Wen Wang, Lining Yao, Teng Zhang, Chin-Yi Cheng, Daniel Levine, and Hiroshi Ishii. 2017. Transformative Appetite: Shape-Changing Food Transforms from 2D to 3D by Water Interaction through Cooking. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 6123–6132.
    45. Hans M. Wingler. 1969. Bauhaus : Weimar, Dessau, Berlin, Chicago. (1969).
    46. Colette Wolff. 2003. The Art of Manipulating Fabric (2nd. ed.). Krause Publications.
    47. WOW Inc. 2014. ISSEY MIYAKE “Steam Stretch” Concept Movie. Retrieved September 1, 2022 from https://vimeo.com/108092253
    48. Lining Yao, Jifei Ou, Chin-Yi Cheng, Helene Steiner, Wen Wang, Guanyun Wang, and Hiroshi Ishii. 2015. BioLogic: Natto Cells as Nanoactuators for Shape Changing Interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA, 1–10.
    49. Yoshimaru Yoshimura. 1955. On the mechanism of buckling of a circular cylindrical shell under axial compression. (1955).


ACM Digital Library Publication:



Overview Page: