“InfraStructs: fabricating information inside physical objects for imaging in the terahertz region” by Willis and Wilson
Conference:
Type(s):
Title:
- InfraStructs: fabricating information inside physical objects for imaging in the terahertz region
Session/Category Title: 3D Printing
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We introduce InfraStructs, material-based tags that embed information inside digitally fabricated objects for imaging in the Terahertz region. Terahertz imaging can safely penetrate many common materials, opening up new possibilities for encoding hidden information as part of the fabrication process. We outline the design, fabrication, imaging, and data processing steps to fabricate information inside physical objects. Prototype tag designs are presented for location encoding, pose estimation, object identification, data storage, and authentication. We provide detailed analysis of the constraints and performance considerations for designing InfraStruct tags. Future application scenarios range from production line inventory, to customized game accessories, to mobile robotics.
References:
1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29, 4, 60:1–60:7. Google ScholarDigital Library
2. Aliaga, D. G., and Atallah, M. J. 2009. Genuinity signatures: Designing signatures for verifying 3d object genuinity. In Proc. EUROGRAPHICS, 437–446.Google Scholar
3. Armstrong, C. M., 2012. The truth about terahertz, September. http://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz.Google Scholar
4. Auston, D. H., and Cheung, K. P. 1985. Coherent time-domain far-infrared spectroscopy. J. Optical Society of America B 2, 4, 606–612.Google ScholarCross Ref
5. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47:1–47:9. Google ScholarDigital Library
6. Bernier, M., Garet, F., Perret, E., Duvillaret, L., and Tedjini, S. 2011. Terahertz encoding approach for secured chipless radio frequency identification. Appl. Opt. 50, 23, 4648–4655.Google ScholarCross Ref
7. Berry, E., Walker, G. C., Fitzgerald, A. J., Zinov ev, N. N., Chamberlain, M., Smye, S. W., Miles, R. E., and Smith, M. A. 2003. Do in vivo terahertz imaging systems comply with safety guidelines? J. Laser Applications 15, 3, 192–198.Google ScholarCross Ref
8. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63:1–63:10. Google ScholarDigital Library
9. Chan, W. L., Deibel, J., and Mittleman, D. M. 2007. Imaging with terahertz radiation. Reports on Progress in Physics 70, 8, 1325–1379.Google ScholarCross Ref
10. Chao, Y.-L., and Aliaga, D. G. 2013. Hiding a second appearance in a physical relief surface. In Information Hiding, M. Kirchner and D. Ghosal, Eds., vol. 7692 of Lecture Notes in Computer Science. Springer, 94–109. Google ScholarDigital Library
11. Ferguson, B., and Abbott, D. 2001. De-noising techniques for terahertz responses of biological samples. Microelectronics Journal 32, 12, 943–953.Google ScholarCross Ref
12. Hashemi, H. 1993. The indoor radio propagation channel. Proc. IEEE 81, 7, 943–968.Google ScholarCross Ref
13. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4, 61:1–61:10. Google ScholarDigital Library
14. Hightower, J., Boriello, G., and Want, R. 2000. Spoton: An indoor 3d location sensing technology based on RF signal strength. CSE Report 2000-02-02, University of Washington.Google Scholar
15. Huang, D., LaRocca, T., Chang, M.-C., Samoska, L., Fung, A., Campbell, R., and Andrews, M. 2008. Terahertz CMOS frequency generator using linear superposition technique. IEEE J. Solid-State Circuits 43, 12, 2730–2738.Google ScholarCross Ref
16. Kato, H., and Tan, K. 2007. Pervasive 2d barcodes for camera phone applications. IEEE Pervasive Computing 6, 4, 76–85. Google ScholarDigital Library
17. Kleine-Ostmann, T., Knobloch, P., Koch, M., Hoffmann, S., Breede, M., Hofmann, M., Hein, G., Pierz, K., Sperling, M., and Donhuijsen, K. 2001. Continuous-wave thz imaging. Electronics Letters 37, 24, 1461–1463.Google ScholarCross Ref
18. Liu, H.-B., Chen, Y., Bastiaans, G. J., and Zhang, X.-C. 2006. Detection and identification of explosive rdx by thz diffuse reflection spectroscopy. Optics Express 14, 1, 415–423.Google ScholarCross Ref
19. Lopes, A. J., MacDonald, E., and Wicker, R. B. 2012. Integrating stereolithography and direct print technologies for 3d structural electronics fabrication. Rapid Prototyping Journal 18, 2, 129–143.Google ScholarCross Ref
20. MacKay, D. J. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press. Google ScholarDigital Library
21. Mohan, A., Woo, G., Hiura, S., Smithwick, Q., and Raskar, R. 2009. Bokode: imperceptible visual tags for camera based interaction from a distance. ACM Trans. Graph. 28, 3, 98:1–98:8. Google ScholarDigital Library
22. Nakazato, Y., Kanbara, M., and Yokoya, N. 2008. Localization system for large indoor environments using invisible markers. In Proc. VRST, ACM, 295–296. Google ScholarDigital Library
23. Orlando, A. R., and Gallerano, G. P. 2009. Terahertz radiation effects and biological applications. J. Infrared, Millimeter and Terahertz Waves 30, 1308–1318.Google Scholar
24. Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. 2002. Physical one-way functions. Science 297, 5589, 2026–2030.Google Scholar
25. Park, H., and Park, J.-I. 2004. Invisible marker tracking for AR. In Proc. ISMAR, IEEE, 272–273. Google ScholarDigital Library
26. Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P., Lee, J., Leigh, D., and Willwacher, T. 2004. RFIG lamps: Interacting with a self-describing world via photosensing wireless tags and projectors. ACM Trans. Graph. 23, 3, 406–415. Google ScholarDigital Library
27. Salvi, J., Pagès, J., and Batlle, J. 2004. Pattern codification strategies in structured light systems. Pattern Recognition 37, 4, 827–849.Google ScholarCross Ref
28. Sherry, H., Grzyb, J., Zhao, Y., Al Hadi, R., Cathelin, A., Kaiser, A., and Pfeiffer, U. 2012. A 1kpixel CMOS camera chip for 25fps real-time terahertz imaging applications. In Proc. ISSCC ’12, IEEE, 252–254.Google Scholar
29. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. ACM Trans. Graph. 31, 4, 48:1–48:11. Google ScholarDigital Library
30. Subramanian, V., Frechet, J., Chang, P., Huang, D., Lee, J., Molesa, S., Murphy, A., Redinger, D., and Volkman, S. 2005. Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc. IEEE 93, 7, 1330–1338.Google ScholarCross Ref
31. Tonouchi, M. 2007. Cutting-edge terahertz technology. Nature Photonics 1, 2, 97–105.Google ScholarCross Ref
32. Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M. G., and Raskar, R. 2012. Recovering three-dimensional shape around a corner using ultrafast time-offlight imaging. Nature Communications 3.Google Scholar
33. Wang, S., and Zhang, X.-C. 2004. Pulsed terahertz tomography. Journal of Physics D: Applied Physics 37, 4, R1.Google ScholarCross Ref
34. Weiser, M. 1993. Ubiquitous computing. IEEE Computer 26, 10, 71–72. Google ScholarDigital Library
35. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, 32:1–32:6. Google ScholarDigital Library
36. Willis, K. D. D., Brockmeyer, E., Hudson, S. E., and Poupyrev, I. 2012. Printed Optics: 3D printing of embedded optical elements for interactive devices. In Proc. UIST ’12, ACM, 589–598. Google ScholarDigital Library
37. Yang, Y., and Fathy, A. 2005. See-through-wall imaging using ultra wideband short-pulse radar system. In Proc. Antennas and Propagation Soc. Int. Symp., vol. 3B, IEEE, 334–337.Google Scholar
38. Yang, L., Rida, A., Vyas, R., and Tentzeris, M. 2007. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microwave Theory and Techniques 55, 12, 2894–2901.Google ScholarCross Ref