“In Situ Segmentation of Turbulent Flow With Topological Data Analysis” by Nauleau, Fovet and Vivodtzev

  • ©Florent Nauleau, Benjamin Fovet, and Fabien Vivodtzev



Entry Number: 61


    In Situ Segmentation of Turbulent Flow With Topological Data Analysis



    Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland, Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling In Situ Data Analysis and Visualization. In Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (Austin, TX, USA) (ISAV2015). Association for Computing Machinery, New York, NY, USA, 25–29. https://doi.org/10.1145/2828612.2828624Google ScholarDigital Library
    Thibault Bridel-Bertomeu. 2021. Immersed boundary conditions for hypersonic flows using ENO-like least-square reconstruction. Computers & Fluids 215(2021), 104794.Google ScholarCross Ref
    H. Edelsbrunner and J. Harer. 2009. Computational Topology: An Introduction. AMS.Google ScholarCross Ref
    Lin Fu. 2019. A low-dissipation finite-volume method based on a new TENO shock-capturing scheme. Computer Physics Communications 235 (2019), 25–39.Google ScholarCross Ref
    Yukio Kaneda, Takashi Ishihara, Mitsuo Yokokawa, Ken’ichi Itakura, and Atsuya Uno. 2003. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of Fluids 15, 2 (2003), L21–L24.Google ScholarCross Ref
    Keiichi Kitamura and Eiji Shima. 2013. Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes. J. Comput. Phys. 245(2013), 62–83.Google ScholarCross Ref
    Meng-Sing Liou. 2006. A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of computational physics 214, 1 (2006), 137–170.Google ScholarDigital Library
    Katate Masatsuka. 2013. I do Like CFD, vol. 1. Vol. 1. Lulu. com.Google Scholar
    Omer San and Kursat Kara. 2015. Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin–Helmholtz instability. Computers & Fluids 117(2015), 24–41.Google ScholarCross Ref
    Julien Tierny. 2018. Topological Data Analysis for Scientific Visualization. Springer.Google Scholar
    Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet, and Michael Michaux. 2017. The Topology ToolKit. (2017). https://topology-tool-kit.github.io/.Google Scholar

ACM Digital Library Publication:

Overview Page: