“Homomorphic factorization of BRDFs for high-performance rendering” by McCool, Ang and Ahmad

  • ©Michael McCool, Jason Ang, and Anis Ahmad




    Homomorphic factorization of BRDFs for high-performance rendering



    A bidirectional reflectance distribution function (BRDF) describes how a material reflects light from its surface. To use arbitrary BRDFs in real-time rendering, a compression technique must be used to represent BRDFs using the available texture-mapping and computational capabilities of an accelerated graphics pipeline. We present a numerical technique, homomorphic factorization, that can decompose arbitrary BRDFs into products of two or more factors of lower dimensionality, each factor dependent on a different interpolated geometric parameter. Compared to an earlier factorization technique based on the singular value decomposition, this new technique generates a factorization with only positive factors (which makes it more suitable for current graphics hardware accelerators), provides control over the smoothness of the result, minimizes relative rather than absolute error, and can deal with scattered, sparse data without a separate resampling and interpolation algorithm.


    1. M. Ashikhmin, S. Premoize, and P. Shirley. A Microfacet-Based BRDF Generator. SIGGRAPH, pp. 65-74, 2000.
    2. M. Ashikhmin and P. Shirley. An anisotropic Phong BRDF model. Journal of Graphics Tools, 5(2), pp. 25-32, 2000.
    3. H. H. Barrett and W. Swindell. Radiological Imaging: The Theory of Image Formation, Detection, and Processing. Academic Press, 1981.
    4. J. Blinn. Jim Blinn’s Corner: Floating-Point Tricks. IEEE Computer Graphics & Applications, 17(4), July-August 1997.
    5. B. Cabral, N. Max, and R. Springmeyer. Bidirectional Reflection Functions From Surface Bump Maps. SIGGRAPH, pp. 273-281, 1987.
    6. B. Cabral, M. Olano, and P. Nemec. Reflection Space Image Based Rendering. SIGGRAPH, pp. 165-170, 1999.
    7. Commission Internationale de l’ Eclairage. CIE Colorimetry Standard. Technical report, Central Bureau of the CIE, 1986.
    8. P. Diefenbach. Pipeline Rendering: Interaction and Realism through Hardware- Based Multi-pass Rendering. PhD thesis, Department of Computer and Information Science, 1996.
    9. C. W. Everitt. High-Quality, Hardware-Accelerated Per-Pixel Illumination for Consumer Class OpenGL Hardware. Master’s thesis, Dept. of Computational Engineering, Mississippi State University, 2000.
    10. A. Fournier. Separating Reflection Functions for Linear Radiosity. Rendering Techniques ’95 (Eurographics Workshop on Rendering), pp. 383-392. Springer, 1995.
    11. R. W. Freund and N. M. Nachtigal. A Quasi-Minimal Residual Method for Non- Hermitian Linear Systems. Numerische Mathematik, 60, pp. 315-339, 1991.
    12. J. Gondek, G. Meyer, and J. Newman. Wavelength Dependent Reflectance Functions. SIGGRAPH, pp. 213-220, 1994.
    13. R. Hall. Illumination and Color in Computer Generated Imagery. Springer- Verlag, 1989.
    14. W. Heidrich and H.-P. Seidel. Realistic, Hardware-Accelerated Shading and Lighting. SIGGRAPH, pp. 171-178, 1999.
    15. W. Heidrich, K. Daubert, J. Kautz, and H.-P. Seidel. Illuminating Micro Geometry Based on Precomputed Visibility. SIGGRAPH, pp. 455-464, 2000.
    16. W. Heidrich and H.-P. Seidel. View-Independent Environment Maps. Eurographics/SIGGRAPH Workshop on Graphics Hardware, pp. 39-45, 1998.
    17. J. Kautz and M. D. McCool. Interactive Rendering with Arbitrary BRDFs using Separable Approximations. Rendering Techniques ’99 (Eurographics Workshop on Rendering), pp. 281-292, Springer, 1999.
    18. J. Kautz and M. D. McCool. Approximation of Glossy Reflection with Prefiltered Environment Maps. Graphics Interface, pp. 119-126, 2000.
    19. J. Kautz, P.-P. Vazquez, W. Heidrich, and H.-P. Seidel. A Unified Approach to Prefiltered Environment Maps. Rendering Techniques ’00 (Eurographics Workshop on Rendering), pp. 185-196. Springer, 2000.
    20. J. Koenderink, A. van Doorn, and M. Stavridi. Bidirectional Reflection Distribution Function Expressed in Terms of Surface Scattering Modes. European Conference on Computer Vision, pp. 28-39, 1996.
    21. E. Lafortune, S.-C. Foo, K. Torrance, and D. Greenberg. Non-Linear Approximation of Reflectance Functions. SIGGRAPH, pp. 117-126, 1997.
    22. E. Lindholm, M. Kilgard, and H. Moreton. User-Programmable Vertex Engine. SIGGRAPH, 2001.
    23. M. Peercy, M. Olano, J. Airey, and J. Ungar. Interactive Multi-Pass Programmable Shading. SIGGRAPH, pp. 425-432, 2000.
    24. M. Pharr and P. Hanrahan. Monte Carlo Evaluation of Non-Linear Scattering Equations for Subsurface Reflection. SIGGRAPH, pp. 75-84, 2000.
    25. B.-T. Phong. Illumination for Computer Generated Pictures. Communications of the ACM, 18(6), pp. 311-317, June 1975.
    26. P. Poulin and A. Fournier. A Model for Anisotropic Reflection. SIGGRAPH, pp. 273-282, 1990.
    27. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press, 1992.
    28. K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A Real-Time Procedural Shading System for Programmable Graphics Hardware . SIGGRAPH, 2001.
    29. P. Schroder and W. Sweldens. Spherical Wavelets: Efficiently Representing Functions on the Sphere. SIGGRAPH, pp. 161-172, 1995.
    30. W. Sturzlinger and R. Bastos. Interactive Rendering of Globally Illuminated Glossy Scenes. Rendering Techniques ’97 (Eurographics Workshop on Rendering), pp. 93-102. Springer, 1997.
    31. C. Trendall and A. J. Stewart. General Calculations using Graphics Hardware, with Applications to Interactive Caustics. Rendering Techniques ’00 (Eurographics Workshop on Rendering), pp. 287-298. Springer, 2000.
    32. B. Walter, G. Alppay, E. LaFortune, S. Fernandez, and D. Greenberg. Fitting Virtual Lights for Non-diffuse Walkthroughs. SIGGRAPH, pp. 45-48, 1997.
    33. G. Ward. Measuring and Modeling Anisotropic Reflection. SIGGRAPH, pp. 265-272, 1992.

ACM Digital Library Publication:

Overview Page: