“Highlighted Depth-of-Field Photography: Shining Light on Focus” by Kim, Horstmeyer, Kim and Raskar

  • ©Jaewon Kim, Roarke Horstmeyer, Ig-Jae Kim, and Ramesh Raskar




    Highlighted Depth-of-Field Photography: Shining Light on Focus



    We present a photographic method to enhance intensity differences between objects at varying distances from the focal plane. By combining a unique capture procedure with simple image processing techniques, the detected brightness of an object is decreased proportional to its degree of defocus. A camera-projector system casts distinct grid patterns onto a scene to generate a spatial distribution of point reflections. These point reflections relay a relative measure of defocus that is utilized in postprocessing to generate a highlighted DOF photograph. Trade-offs between three different projector-processing pairs are analyzed, and a model is developed to help describe a new intensity-dependent depth of field that is controlled by the pattern of illumination. Results are presented for a primary single snapshot design as well as a scanning method and a comparison method. As an application, automatic matting results are presented.


    1. Bae, S. and Durand, F. 2007. Defocus magnification. Comput. Graph. Forum 26, 3.
    2. Born, M. and Wolf, E. 1970. Principles of Optics. Pergamon Press.
    3. Davis, J., Nehab, D., Ramamoothi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Patt. Anal. Mach. Intell. 27, 2.
    4. Eisner, M., Lindlein, N., and Schwider, J. 1998. Confocal microscopy with a refractive microlens-pinhole array. Optics Lett. 23, 10.
    5. Hasinoff, S. and Kutulakos, K. 2006. Confocal stereo. In Proceedings of the 9th European Conference on Computer Vision (ECCV), 259–268.
    6. Heintzmann, R., Hanley, Q. S., Arndt-jovin, D., and Jovin, T. M. 2001. A dual path programmable array microscope (pam):simultaneous acquisition of conjugate and non-conjugate images. J. Microscopy 204, 119–137.
    7. Joshi, N., Matusik, W., and Avidan, S. 2006. Natural video matting using camera arrays. In Proceedings of the International Conference on Computer Graphics and Interactive Techniques. ACM SIGGRAPH. 779–786.
    8. Kim, J., Lanman, D., Mukaigawa, Y., and Raskar, R. 2010. Descattering transmission via angular filtering. In Proceedings of the European Conference on Computer Vision (ECCV’10). Lecture Notes in Computer Science, vol. 6311. Springer, 86–99.
    9. Lai, S., Fu, C., and Chang, S. 1992. A generalized depth estimation algorithm with a single image. IEEE Trans. Patt. Anal. Mach. Intell. 14, 4, 405–411.
    10. LeMoigne, J. and Waxman, A. 1988. Structured light patterns for robot mobility. IEEE J. Robot. Autom. 4, 5, 541–548.
    11. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., and Bolas, M. 2004. Synthetic aperture confocal imaging. In Proceedings of the Conference on Computer Graphics and Interactive Techniques. ACM SIGGRAPH.
    12. Levoy, M., Ng, R., Adams, A., Footer, M., and Horowitz, M. 2006. Light field microscopy. ACM Trans. Graph. 22, 2.
    13. Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4d light field in a microscope. J. Microscopy 235.
    14. Maas, H. 1992. Robust automatic surface reconstruction with structured light. Int. Arch. Photogram. Remote Sens. 29, B5.
    15. Mitic, J., Anhut, T., Serov, A., and Lasser, T. 2003. Real-Time optically sectioned wide-field microscopy employing structured light illumination and a cmos detector. Proc. SPIE 4964.
    16. Moreno-Noguer, F., Belhumeur, P. N., and Nayar, S. K. 2007. Active refocusing of images and videos. In Proceedings of the Conference on Computer Graphics and Interaction Techniques ACM SIGGRAPH 2007.
    17. Mouaddabi, E., Batile, J., and Salvi, J. 1997. Recent progress in structured light in order to solve the correspondence problem in stereovision. In Proceedings of the IEEE International Conference on Robotics and Automation. (ICRA).
    18. Nayar, S., Krichnan, G., Grossberg, M., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 3, 935–943.
    19. Ng, R., Levoy, M., Bredif, M., Duval, M., Horowitz, G., and Hanrahan, P. 2004. Light field photography with a hand-held plenoptic camera. Tech. rep, Stanford University.
    20. Salvi, J., Pages, J., and Batlle, J. 2004. Pattern codification strategies in structured light systems. Patt. Recogn. 37, 827–849.
    21. Schechner, Y., Kiryati, N., and Basri, R. 2000. Separation of transparent layers using focus. Int. J. Comput. Vis. 39, 1, 25–39.
    22. Shrikhande, N. and Stockman, G. 1989. Surface orientation from a projection grid. IEEE Trans. Pattern Anal. Mach. Intell. 11, 6, 650–655.
    23. Sun, J., Kang, S. B., and Shum, H. Y. 2006. Flash matting. In Proceedings of the International Conference on Computer Graphics and Interactive Techniques. ACM SIGGRAPH. 361–366.
    24. Tiziani, H. and Uhde, H. 1994. Three-Dimensional analysis by a microlens-array confocal arrangement. Appl. Optics 33, 567–572.
    25. Wang, Y., Mitiche, A., and Aggarwal, J. 1987. Computation of surface orientation and structure of objects using grid coding. IEEE Trans. Pattern Anal. Mach. Intell. 9, 129–137.
    26. Watanabe, M. and Nayar, S. 1998. Rational filters for passive depth from defocus. Int. J. Comput. Vis. 27, 3, 203–225.
    27. Will, P. and Pennington, K. 1971. Grid coding: A preprocessing technique for robot and machine vision. Artif. Intell. 2, 319–329.
    28. Wilson, T., Juskaitis, R., Neil, M., and Kozubek, M. 1996. Confocal microscopy by aperture correlation. Optics Lett. 21, 3.
    29. Zhang, L. and Nayar, S. 2006. Projection defocus analysis for scene capture and image display. ACM Trans. Graph. 25, 3, 907–915.

ACM Digital Library Publication:

Overview Page: