“Highlight microdisparity for improved gloss depiction” by Templin, Didyk, Ritschel, Myszkowski and Seidel

  • ©Krzysztof Templin, Piotr Didyk, Tobias Ritschel, Karol Myszkowski, and Hans-Peter Seidel




    Highlight microdisparity for improved gloss depiction



    Human stereo perception of glossy materials is substantially different from the perception of diffuse surfaces: A single point on a diffuse object appears the same for both eyes, whereas it appears different to both eyes on a specular object. As highlights are blurry reflections of light sources they have depth themselves, which is different from the depth of the reflecting surface. We call this difference in depth impression the “highlight disparity”. Due to artistic motivation, for technical reasons, or because of incomplete data, highlights often have to be depicted on-surface, without any disparity. However, it has been shown that a lack of disparity decreases the perceived glossiness and authenticity of a material. To remedy this contradiction, our work introduces a technique for depiction of glossy materials, which improves over simple on-surface highlights, and avoids the problems of physical highlights. Our technique is computationally simple, can be easily integrated in an existing (GPU) shading system, and allows for local and interactive artistic control.


    1. Blake, A., and Brelstaff, G. 1988. Geometry from specularities. In Proc. Int. Conf. on Computer Vision, 394–403.Google Scholar
    2. Blake, A., and Bülthoff, H. 1990. Does the brain know the physics of specular reflection? Nature 343, 6254, 165–168.Google Scholar
    3. Blake, A. 1985. Specular stereo. In Proc. Int. J. Conf. on Artificial Intell, 973–976. Google ScholarDigital Library
    4. Brewster, D. 1861. On binocular lustre. Reports of British Association 2, 29–31.Google Scholar
    5. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A perceptual model for disparity. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarDigital Library
    6. Dove, H. 1851. Über die Ursachen des Glanzes und der Irradiation, abgeleitet aus chromatischen Versuchen mit dem Stereoskop. Annalen der Physik 159, 5, 169–183.Google ScholarCross Ref
    7. Fleming, R. W., Torralba, A., and Adelson, E. H. 2004. Specular reflections and the perception of shape. J Vision 4, 9.Google ScholarCross Ref
    8. Hess, R., Kingdom, F., and Ziegler, L. 1999. On the relationship between the spatial channels for luminance and disparity processing. Vis. Res. 39, 3, 559–568.Google ScholarCross Ref
    9. Howard, I. 1995. Depth from binocular rivalry without spatial disparity. Perception 24, 67–67.Google ScholarCross Ref
    10. Hurlbert, A., Cumming, B., and Parker, A. 1991. Recognition and perceptual use of specular reflections. Investigative Ophthalmology & Visual Science 32, 105.Google Scholar
    11. Kirschmann, A. 1895. Der Metallglanz und die Parallaxe des indirecten Sehens. Verlag von Wilhelm Engelmann.Google Scholar
    12. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, 75. Google ScholarDigital Library
    13. Obein, G., Knoblauch, K., and Vienot, F. 2004. Difference scaling of gloss: nonlinearity, binocularity, and constancy. J Vision 4, 9.Google ScholarCross Ref
    14. Paille, D., Monot, A., Dumont-Becle, P., and Kemeny, A. 2001. Luminance binocular disparity for 3d surface simulation. In Proc. SPIE, vol. 4299, 622.Google Scholar
    15. Pellacini, F., Ferwerda, J., and Greenberg, D. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proc. SIGGRAPH, 55–64. Google ScholarDigital Library
    16. Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., and Seidel, H.-P. 2009. Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. Comput. Graph. Forum (Proc. Eurographics) 28, 2, 183–92.Google ScholarCross Ref
    17. Robertson, B. 2009. Monsters of the deep. Comput. Graph. World 32, 3.Google Scholar
    18. Sakano, Y., and Ando, H. 2010. Effects of head motion and stereo viewing on perceived glossiness. J Vision 10, 9, 15.Google ScholarCross Ref
    19. Sousa, T., Kasyan, N., and Schulz, N. 2012. GPU Pro 3. CRC Press, ch. CryENGINE, 163.Google Scholar
    20. Tan, R., and Ikeuchi, K. 2005. Separating reflection components of textured surfaces using a single image. PAMI 27, 2, 178–93. Google ScholarDigital Library
    21. Ďuriković, R., and Martens, W. 2003. Simulation of sparkling and depth effect in paints. In Proc. SCCG, 207–213. Google ScholarDigital Library
    22. Vergne, R., Pacanowski, R., Barla, P., Granier, X., and Schlick, C. 2009. Light warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3, 25. Google ScholarDigital Library
    23. Wendt, G., Faul, F., and Mausfeld, R. 2008. Highlight disparity contributes to the authenticity and strength of perceived glossiness. J Vision 8, 1.Google ScholarCross Ref
    24. Wendt, G., Faul, F., Ekroll, V., and Mausfeld, R. 2010. Disparity, motion, and color information improve gloss constancy performance. J Vision 10, 9.Google ScholarCross Ref
    25. Wills, J., Agarwal, S., Kriegman, D., and Belongie, S. 2009. Toward a perceptual space for gloss. ACM Trans. Graph. 28, 4, 103. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: