“High-resolution brittle fracture simulation with boundary elements” by Hahn and Wojtan

  • ©David Hahn and Chris Wojtan




    High-resolution brittle fracture simulation with boundary elements

Session/Category Title: Simulating With Surfaces




    We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front.Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation.Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix.


    1. Abdelaziz, Y., and Hamouine, A. 2008. A survey of the extended finite element. Computers & Structures 86, 1141–1151. Google ScholarDigital Library
    2. Aliabadi, M. 1997. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 50, 2, 83–96.Google ScholarCross Ref
    3. Anderson, T. L. 2005. Fracture mechanics: fundamentals and applications. CRC press.Google Scholar
    4. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. TVCG 13, 370–378. Google ScholarDigital Library
    5. Becker, W., and Lampman, S. 2002. Fracture appearance and mechanisms of deformation and fracture. Materials Park, OH: ASM International 2002, 559–586.Google Scholar
    6. Chen, Z., Yao, M., Feng, R., and Wang, H. 2014. Physics-inspired adaptive fracture refinement. ACM Trans. Graph. 33, 113:1–113:7. Google ScholarDigital Library
    7. DREAM3D, 2014. A Digital Representation Environment for the Analysis of Microstructure in 3D. v. 4.2.4. http://dream3d.bluequartz.net.Google Scholar
    8. Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M. 2002. 3D fracture analysis by the symmetric Galerkin BEM. Computational Mechanics 28, 3-4, 220–232.Google ScholarCross Ref
    9. Freund, L. B. 1998. Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics. Cambridge University Press.Google Scholar
    10. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH 97, Annual Conference Series, 209–216. Google ScholarDigital Library
    11. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-based fractured appearance. Computer Graphics Forum 31, 4, 1547–1556. Google ScholarDigital Library
    12. Glondu, L., Marchal, M., and Dumont, G. 2013. Real-time simulation of brittle fracture using modal analysis. TVCG 19, 201–209. Google ScholarDigital Library
    13. Gravouil, A., Moës, N., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets — part II: level set update. INT J NUMER METH ENG 53, 11, 2569–2586.Google ScholarCross Ref
    14. Gross, D., and Seelig, T. 2011. Fracture Mechanics, 2nd ed. Springer.Google Scholar
    15. Hirota, K., Tanoue, Y., and Kaneko, T. 1998. Generation of crack patterns with a physical model. The Visual Computer 14, 126–137.Google ScholarCross Ref
    16. Hirota, K., Tanoue, Y., and Kaneko, T. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 371–378.Google ScholarCross Ref
    17. HyENA, 2013. Hyperbolic and Elliptic Numerical Analysis. Graz University of Technology. http://www.mech.tugraz.at/HyENA v. 2013-Nov-04.Google Scholar
    18. Iben, H. N., and O’Brien, J. F. 2006. Generating surface crack patterns. In ACM SIGGRAPH/Eurographics SCA 2006, 177–185. Google ScholarDigital Library
    19. Ingraffea, A. R., and Wawrzynek, P. A. 2003. Finite Element Methods for Linear Elastic Fracture Mechanics, Chapter 3.1 in Comprehensive Structural Integrity. Elsevier Science Ltd.Google Scholar
    20. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In ACM SIGGRAPH/Eurographics SCA 2004, 131–140. Google ScholarDigital Library
    21. James, D. L., and Pai, D. K. 1999. Artdefo: Accurate real time deformable objects. In SIGGRAPH 99, Annual Conference Series, 65–72. Google ScholarDigital Library
    22. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 50:1–50:10. Google ScholarDigital Library
    23. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In ACM SIGGRAPH/Eurographics SCA 2014, 11–19. Google ScholarDigital Library
    24. Kielhorn, L. 2009. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Verl. der Techn. Univ. Graz.Google Scholar
    25. Koschier, D., Lipponer, S., and Bender, J. 2014. Adaptive tetrahedral meshes for brittle fracture simulation. In ACM SIGGRAPH/Eurographics SCA 2014.Google Scholar
    26. Levine, J. A., Bargteil, A. W., Corsi, C., Tessendorf, J., and Geist, R. 2014. A peridynamic perspective on spring-mass fracture. In ACM SIGGRAPH/Eurographics SCA 2014.Google Scholar
    27. Messner, M., and Schanz, M. 2010. An accelerated symmetric time-domain boundary element formulation for elasticity. Engineering Analysis with Boundary Elements 34, 11, 944–955.Google ScholarCross Ref
    28. Möes, N., Gravouil, A., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets — part I: mechanical model. INT J NUMER METH ENG 53, 11, 2549–2568.Google ScholarCross Ref
    29. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 385–392. Google ScholarDigital Library
    30. Mousavi, S. E., Grinspun, E., and Sukumar, N. 2011. Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. INT J NUMER METH ENG 86, 4–5, 560–574.Google ScholarCross Ref
    31. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographic Workshop on Computer Animation and Simulation, Springer-Verlag New York, Inc., New York, NY, USA, 113–124. Google ScholarDigital Library
    32. Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32, 115:1–115:10. Google ScholarDigital Library
    33. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 52:1–52:9. Google ScholarDigital Library
    34. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 210–219. Google ScholarDigital Library
    35. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Annual Conference Series, 137–146. Google ScholarDigital Library
    36. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291–294. Google ScholarDigital Library
    37. OpenVDB, 2014. DreamWorks Animation. v. 2.2.0. http://www.openvdb.org.Google Scholar
    38. ParaView, 2014. Kitware Inc. v. 4.1.0. http://www.paraview.org.Google Scholar
    39. Patricio, M., and Mattheij, R. 2007. Crack propagation analysis. CASA-report 0723.Google Scholar
    40. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957–964. Google ScholarDigital Library
    41. Pfaff, T., Narain, R., de Joya, J. M., and O’Brien, J. F. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 110:1–110:9. Google ScholarDigital Library
    42. Portela, A., Aliabadi, M. H., and Rooke, D. P. 1992. The dual boundary element method: effective implementation for crack problems. INT J NUMER METH ENG 33, 6, 1269–1287.Google ScholarCross Ref
    43. Rabczuk, T. 2013. Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives. ISRN Applied Mathematics 2013, Article ID 849231.Google Scholar
    44. Sauter, S. A., and Schwab, C. 2011. Boundary Element Methods. Springer Berlin Heidelberg.Google Scholar
    45. Schvartzman, S. C., and Otaduy, M. A. 2014. Fracture animation based on high-dimensional voronoi diagrams. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 15–22. Google ScholarDigital Library
    46. Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Computer Graphics Forum 20, 81–91.Google ScholarCross Ref
    47. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 102:1–102:10. Google ScholarDigital Library
    48. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 138:1–138:11. Google ScholarDigital Library
    49. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In ACM SIGGRAPH/Eurographics SCA 2009, 155–164. Google ScholarDigital Library
    50. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 399–405. Google ScholarDigital Library
    51. Sutradhar, A., Paulino, G. H., and Gray, L. J. 2008. Symmetric Galerkin boundary element method. Springer.Google Scholar
    52. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 269–278. Google ScholarDigital Library
    53. VCGlib, 2014. The VCG Library, Visual Computing Lab, CNR-ISTI. http://vcg.isti.cnr.it/~cignoni/newvcglib/html.Google Scholar
    54. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1–49:11. Google ScholarDigital Library
    55. Wilde, A. J., and Aliabadi, M. H. 1999. A 3-d dual BEM formulation for the analysis of crack growth. Computational Mechanics 23, 3, 250–257.Google ScholarCross Ref
    56. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1–47:8. Google ScholarDigital Library
    57. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1–69:13. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: