“High-resolution brittle fracture simulation with boundary elements” by Hahn and Wojtan
Conference:
Type(s):
Title:
- High-resolution brittle fracture simulation with boundary elements
Session/Category Title: Simulating With Surfaces
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front.Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation.Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix.
References:
1. Abdelaziz, Y., and Hamouine, A. 2008. A survey of the extended finite element. Computers & Structures 86, 1141–1151. Google ScholarDigital Library
2. Aliabadi, M. 1997. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 50, 2, 83–96.Google ScholarCross Ref
3. Anderson, T. L. 2005. Fracture mechanics: fundamentals and applications. CRC press.Google Scholar
4. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. TVCG 13, 370–378. Google ScholarDigital Library
5. Becker, W., and Lampman, S. 2002. Fracture appearance and mechanisms of deformation and fracture. Materials Park, OH: ASM International 2002, 559–586.Google Scholar
6. Chen, Z., Yao, M., Feng, R., and Wang, H. 2014. Physics-inspired adaptive fracture refinement. ACM Trans. Graph. 33, 113:1–113:7. Google ScholarDigital Library
7. DREAM3D, 2014. A Digital Representation Environment for the Analysis of Microstructure in 3D. v. 4.2.4. http://dream3d.bluequartz.net.Google Scholar
8. Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M. 2002. 3D fracture analysis by the symmetric Galerkin BEM. Computational Mechanics 28, 3-4, 220–232.Google ScholarCross Ref
9. Freund, L. B. 1998. Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics. Cambridge University Press.Google Scholar
10. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH 97, Annual Conference Series, 209–216. Google ScholarDigital Library
11. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-based fractured appearance. Computer Graphics Forum 31, 4, 1547–1556. Google ScholarDigital Library
12. Glondu, L., Marchal, M., and Dumont, G. 2013. Real-time simulation of brittle fracture using modal analysis. TVCG 19, 201–209. Google ScholarDigital Library
13. Gravouil, A., Moës, N., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets — part II: level set update. INT J NUMER METH ENG 53, 11, 2569–2586.Google ScholarCross Ref
14. Gross, D., and Seelig, T. 2011. Fracture Mechanics, 2nd ed. Springer.Google Scholar
15. Hirota, K., Tanoue, Y., and Kaneko, T. 1998. Generation of crack patterns with a physical model. The Visual Computer 14, 126–137.Google ScholarCross Ref
16. Hirota, K., Tanoue, Y., and Kaneko, T. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 371–378.Google ScholarCross Ref
17. HyENA, 2013. Hyperbolic and Elliptic Numerical Analysis. Graz University of Technology. http://www.mech.tugraz.at/HyENA v. 2013-Nov-04.Google Scholar
18. Iben, H. N., and O’Brien, J. F. 2006. Generating surface crack patterns. In ACM SIGGRAPH/Eurographics SCA 2006, 177–185. Google ScholarDigital Library
19. Ingraffea, A. R., and Wawrzynek, P. A. 2003. Finite Element Methods for Linear Elastic Fracture Mechanics, Chapter 3.1 in Comprehensive Structural Integrity. Elsevier Science Ltd.Google Scholar
20. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In ACM SIGGRAPH/Eurographics SCA 2004, 131–140. Google ScholarDigital Library
21. James, D. L., and Pai, D. K. 1999. Artdefo: Accurate real time deformable objects. In SIGGRAPH 99, Annual Conference Series, 65–72. Google ScholarDigital Library
22. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 50:1–50:10. Google ScholarDigital Library
23. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In ACM SIGGRAPH/Eurographics SCA 2014, 11–19. Google ScholarDigital Library
24. Kielhorn, L. 2009. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Verl. der Techn. Univ. Graz.Google Scholar
25. Koschier, D., Lipponer, S., and Bender, J. 2014. Adaptive tetrahedral meshes for brittle fracture simulation. In ACM SIGGRAPH/Eurographics SCA 2014.Google Scholar
26. Levine, J. A., Bargteil, A. W., Corsi, C., Tessendorf, J., and Geist, R. 2014. A peridynamic perspective on spring-mass fracture. In ACM SIGGRAPH/Eurographics SCA 2014.Google Scholar
27. Messner, M., and Schanz, M. 2010. An accelerated symmetric time-domain boundary element formulation for elasticity. Engineering Analysis with Boundary Elements 34, 11, 944–955.Google ScholarCross Ref
28. Möes, N., Gravouil, A., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets — part I: mechanical model. INT J NUMER METH ENG 53, 11, 2549–2568.Google ScholarCross Ref
29. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 385–392. Google ScholarDigital Library
30. Mousavi, S. E., Grinspun, E., and Sukumar, N. 2011. Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. INT J NUMER METH ENG 86, 4–5, 560–574.Google ScholarCross Ref
31. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographic Workshop on Computer Animation and Simulation, Springer-Verlag New York, Inc., New York, NY, USA, 113–124. Google ScholarDigital Library
32. Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32, 115:1–115:10. Google ScholarDigital Library
33. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 52:1–52:9. Google ScholarDigital Library
34. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 210–219. Google ScholarDigital Library
35. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Annual Conference Series, 137–146. Google ScholarDigital Library
36. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291–294. Google ScholarDigital Library
37. OpenVDB, 2014. DreamWorks Animation. v. 2.2.0. http://www.openvdb.org.Google Scholar
38. ParaView, 2014. Kitware Inc. v. 4.1.0. http://www.paraview.org.Google Scholar
39. Patricio, M., and Mattheij, R. 2007. Crack propagation analysis. CASA-report 0723.Google Scholar
40. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957–964. Google ScholarDigital Library
41. Pfaff, T., Narain, R., de Joya, J. M., and O’Brien, J. F. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 110:1–110:9. Google ScholarDigital Library
42. Portela, A., Aliabadi, M. H., and Rooke, D. P. 1992. The dual boundary element method: effective implementation for crack problems. INT J NUMER METH ENG 33, 6, 1269–1287.Google ScholarCross Ref
43. Rabczuk, T. 2013. Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives. ISRN Applied Mathematics 2013, Article ID 849231.Google Scholar
44. Sauter, S. A., and Schwab, C. 2011. Boundary Element Methods. Springer Berlin Heidelberg.Google Scholar
45. Schvartzman, S. C., and Otaduy, M. A. 2014. Fracture animation based on high-dimensional voronoi diagrams. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 15–22. Google ScholarDigital Library
46. Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Computer Graphics Forum 20, 81–91.Google ScholarCross Ref
47. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 102:1–102:10. Google ScholarDigital Library
48. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 138:1–138:11. Google ScholarDigital Library
49. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In ACM SIGGRAPH/Eurographics SCA 2009, 155–164. Google ScholarDigital Library
50. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 399–405. Google ScholarDigital Library
51. Sutradhar, A., Paulino, G. H., and Gray, L. J. 2008. Symmetric Galerkin boundary element method. Springer.Google Scholar
52. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 269–278. Google ScholarDigital Library
53. VCGlib, 2014. The VCG Library, Visual Computing Lab, CNR-ISTI. http://vcg.isti.cnr.it/~cignoni/newvcglib/html.Google Scholar
54. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1–49:11. Google ScholarDigital Library
55. Wilde, A. J., and Aliabadi, M. H. 1999. A 3-d dual BEM formulation for the analysis of crack growth. Computational Mechanics 23, 3, 250–257.Google ScholarCross Ref
56. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1–47:8. Google ScholarDigital Library
57. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1–69:13. Google ScholarDigital Library