“High-order similarity relations in radiative transfer” by Zhao, Ramamoorthi and Bala
Conference:
Type(s):
Title:
- High-order similarity relations in radiative transfer
Session/Category Title: Light Transport
Presenter(s)/Author(s):
Moderator(s):
Abstract:
Radiative transfer equations (RTEs) with different scattering parameters can lead to identical solution radiance fields. Similarity theory studies this effect by introducing a hierarchy of equivalence relations called “similarity relations”. Unfortunately, given a set of scattering parameters, it remains unclear how to find altered ones satisfying these relations, significantly limiting the theory’s practical value. This paper presents a complete exposition of similarity theory, which provides fundamental insights into the structure of the RTE’s parameter space. To utilize the theory in its general high-order form, we introduce a new approach to solve for the altered parameters including the absorption and scattering coefficients as well as a fully tabulated phase function. We demonstrate the practical utility of our work using two applications: forward and inverse rendering of translucent media. Forward rendering is our main application, and we develop an algorithm exploiting similarity relations to offer “free” speedups for Monte Carlo rendering of optically dense and forward-scattering materials. For inverse rendering, we propose a proof-of-concept approach which warps the parameter space and greatly improves the efficiency of gradient descent algorithms. We believe similarity theory is important for simulating and acquiring volume-based appearance, and our approach has the potential to benefit a wide range of future applications in this area.
References:
1. Arbree, A., Walter, B., and Bala, K. 2011. Heterogeneous subsurface scattering using the finite element method. IEEE Trans. on Visualization and Computer Graphics 17, 7, 956–969. Google ScholarDigital Library
2. Arfken, G. B., Weber, H.-J., and Ruby, L. 1985. Mathematical methods for physicists. Academic press New York.Google Scholar
3. Chandrasekhar, S. 1960. Radiative transfer. Courier Dover Publications.Google Scholar
4. Chatigny, S., Morin, M., Asselin, D., Painchaud, Y., and Beaudry, P. 1999. Hybrid Monte Carlo for photon transport through optically thick scattering media. Applied optics 38, 28, 6075–6086.Google Scholar
5. Curto, R. E., and Fialkow, L. A. 1991. Recursiveness, positivity, and truncated moment problems. Houston J. Math 17, 4, 603–635.Google Scholar
6. Dachsbacher, C., KÅŹivÃąnek, J., HaÅąan, M., Arbree, A., Walter, B., and NovÃąk, J. 2014. Scalable realistic rendering with many-light methods. Computer Graphics Forum 33, 1, 88–104.Google ScholarDigital Library
7. Debevec, P. 1998. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In Proceedings of SIGGRAPH 1998, 189–198. Google ScholarDigital Library
8. D’Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4, 56:1–56:14. Google ScholarDigital Library
9. Dobashi, Y., Iwasaki, W., Ono, A., Yamamoto, T., Yue, Y., and Nishita, T. 2012. An inverse problem approach for automatically adjusting the parameters for rendering clouds using photographs. ACM Trans. Graph. 31, 6, 145:1–145:10. Google ScholarDigital Library
10. Donner, C., and Jensen, H. W. 2007. Rendering translucent materials using photon diffusion. In Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR’07, 243–251. Google ScholarDigital Library
11. Frisvad, J. R., Christensen, N. J., and Jensen, H. W. 2007. Computing the scattering properties of participating media using Lorenz-Mie theory. ACM Trans. Graph. 26, 3, 60:1–60:10. Google ScholarDigital Library
12. Gkioulekas, I., Xiao, B., Zhao, S., Adelson, E. H., Zickler, T., and Bala, K. 2013. Understanding the role of phase function in translucent appearance. ACM Trans. Graph. 32, 5, 147:1–147:19. Google ScholarDigital Library
13. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., and Levin, A. 2013. Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 6, 162:1–162:13. Google ScholarDigital Library
14. Gurobi, 2013. Gurobi optimization libraries. www.gurobi.com.Google Scholar
15. Habel, R., Christensen, P. H., and Jarosz, W. 2013. Photon beam diffusion: A hybrid monte carlo method for subsurface scattering. In Computer Graphics Forum, vol. 32, 27–37. Google ScholarDigital Library
16. Hachisuka, T., Jarosz, W., Bouchard, G., Christensen, P., Frisvad, J. R., Jakob, W., Jensen, H. W., Kaschalk, M., Knaus, C., Selle, A., and Spencer, B. 2012. State of the art in photon density estimation. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, 6:1–6:469. Google ScholarDigital Library
17. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4, 61:1–61:10. Google ScholarDigital Library
18. Henyey, L. G., and Greenstein, J. L. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93, 70–83.Google ScholarCross Ref
19. Ishimaru, A. 1978. Wave propagation and scattering in random media, vol. 2. Academic press New York.Google Scholar
20. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29, 4, 53:1–53:13. Google ScholarDigital Library
21. Jakob, W., 2010. Mitsuba renderer. www.mitsuba-renderer.org.Google Scholar
22. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001, 511–518. Google ScholarDigital Library
23. Kajiya, J. T., and Von Herzen, B. P. 1984. Ray tracing volume densities. SIGGRAPH Comput. Graph. 18, 3, 165–174. Google ScholarDigital Library
24. Kozlov, M. K., Tarasov, S. P., and Khachiyan, L. G. 1980. The polynomial solvability of convex quadratic programming. USSR Computational Mathematics and Mathematical Physics 20, 5, 223–228.Google ScholarCross Ref
25. Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Rendering TechniquesâĂŹ 96. Springer, 91–100. Google ScholarDigital Library
26. Li, H., Pellacini, F., and Torrance, K. E. 2005. A hybrid Monte Carlo method for accurate and efficient subsurface scattering. In Proceedings of EGSR 2005, 283–290. Google ScholarDigital Library
27. Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30, 4, 40:1–40:14. Google ScholarDigital Library
28. Papas, M., Regg, C., Jarosz, W., Bickel, B., Jackson, P., Matusik, W., Marschner, S., and Gross, M. 2013. Fabricating translucent materials using continuous pigment mixtures. ACM Trans. Graph. 32, 4, 146:1–146:12. Google ScholarDigital Library
29. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Proceedings of EGWR 2000, 11–22. Google ScholarDigital Library
30. Stam, J. 1995. Multiple scattering as a diffusion process. In Rendering TechniquesâĂŹ 95. 41–50. Google ScholarDigital Library
31. Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. In Proceedings of EGSR 2007, 195–206. Google ScholarDigital Library
32. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 1, 9:1–9:18. Google ScholarDigital Library
33. Wyman, D. R., Patterson, M. S., and Wilson, B. C. 1989. Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles. Journal of Computational Physics 81, 1, 137–150. Google ScholarDigital Library
34. Wyman, D. R., Patterson, M. S., and Wilson, B. C. 1989. Similarity relations for the interaction parameters in radiation transport. Applied optics 28, 24, 5243–5249.Google Scholar