“High-order diffraction and diffuse reflections for interactive sound propagation in large environments” by Manocha, Schissler and Mehra

  • ©Dinesh Manocha, Carl Schissler, and Ravish Mehra

Conference:


Type:


Title:

    High-order diffraction and diffuse reflections for interactive sound propagation in large environments

Session/Category Title:   Sound & Light


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present novel algorithms for modeling interactive diffuse reflections and higher-order diffraction in large-scale virtual environments. Our formulation is based on ray-based sound propagation and is directly applicable to complex geometric datasets. We use an incremental approach that combines radiosity and path tracing techniques to iteratively compute diffuse reflections. We also present algorithms for wavelength-dependent simplification and visibility graph computation to accelerate higher-order diffraction at runtime. The overall system can generate plausible sound effects at interactive rates in large, dynamic scenes that have multiple sound sources. We highlight the performance in complex indoor and outdoor environments and observe an order of magnitude performance improvement over previous methods.

References:


    1. Alarcao, D., Santos, D., and Coelho, J. L. B. 2009. An auralization system for real time room acoustics simulation. In Proceedings of Tecniacustica.Google Scholar
    2. Allen, J. B., and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America 65, 4 (April), 943–950.Google ScholarCross Ref
    3. Antani, L., and Manocha, D. 2013. Aural proxies and directionally-varying reverberation for interactive sound propagation in virtual environments. Visualization and Computer Graphics, IEEE Transactions on 19, 4, 567–575. Google ScholarDigital Library
    4. Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2012. Efficient finite-edge diffraction using conservative from-region visibility. Applied Acoustics 73, 218–233.Google ScholarCross Ref
    5. Antani, L., Chandak, A., Savioja, L., and Manocha, D. 2012. Interactive sound propagation using compact acoustic transfer operators. ACM Trans. Graph. 31, 1 (Feb.), 7:1–7:12. Google ScholarDigital Library
    6. Attenborough, K., Li, K. M., and Horoshenkov, K. 2007. Predicting Outdoor Sound. Taylor and Francis, New York.Google Scholar
    7. Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. 2005. Phonon tracing for auralization and visualization of sound. In Proceedings of IEEE Visualization, 151–158.Google Scholar
    8. Borish, J. 1984. Extension to the image model to arbitrary polyhedra. The Journal of the Acoustical Society of America 75, 6 (June), 1827–1836.Google ScholarCross Ref
    9. Chandak, A., Antani, L., Taylor, M., and Manocha, D. 2009. Fastv: From-point visibility culling on complex models. Computer Graphics Forum (Proc. of EGSR) 28, 3, 1237–1247. Google ScholarDigital Library
    10. Dross, P., Schröder, D., and Vorländer, M. 2007. A fast reverberation estimator for virtual environments. In Audio Engineering Society Conference: 30th International Conference: Intelligent Audio Environments, Audio Engineering Society.Google Scholar
    11. Economou, P., Charalampous, P., Ioannides, S., and Polykarpou, P. 2013. The significance of sound diffraction effects in predicting acoustics in ancient theatres. Acta Acustica united with Acustica 99, 1, 48–57.Google Scholar
    12. Embrechts, J. J. 2000. Broad spectrum diffusion model for room acoustics ray-tracing algorithms. The Journal of the Acoustical Society of America 107, 4, 2068–2081.Google ScholarCross Ref
    13. Eyring, C. F. 1930. Reverberation time in “dead” rooms. The Journal of the Acoustical Society of America 1, 2A (January), 217–241.Google ScholarCross Ref
    14. Franzoni, L. P., Bliss, D. B., and Rouse, J. W. 2001. An acoustic boundary element method based on energy and intensity variables for prediction of high-frequency broadband sound fields. The Journal of the Acoustical Society of America 110, 3071.Google ScholarCross Ref
    15. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of ACM SIGGRAPH, 21–32. Google ScholarDigital Library
    16. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 209–216. Google ScholarDigital Library
    17. Gumerov, N. A., and Duraiswami, R. 2009. A broadband fast multipole accelerated boundary element method for the three-dimensional helmholtz equation. J. Acoustical Society of America 125, 1, 191–205.Google ScholarCross Ref
    18. Huang, J., Yagel, R., Filippov, V., and Kurzion, Y. 1998. An accurate method for voxelizing polygon meshes. In Volume Visualization, 1998. IEEE Symposium on, IEEE, 119–126. Google ScholarDigital Library
    19. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. In Proc. of ACM SIGGRAPH, 987–995. Google ScholarDigital Library
    20. Kouyoumjian, R. G., and Pathak, P. H. 1974. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE 62, 11, 1448–1461.Google ScholarCross Ref
    21. Krivanek, J., Gautron, P., Ward, G., Jensen, H., Tabellion, E., and Christensen, P. 2008. Practical Global Illumination with Irradiance Caching. ACM SIGGRAPH Course Notes. Google ScholarDigital Library
    22. Krokstad, A., Strom, S., and Sorsdal, S. 1968. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration 8, 1 (July), 118–125.Google ScholarCross Ref
    23. Kuttruff, H. 1995. A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries. The Journal of the Acoustical Society of America 98, 1, 288–293.Google ScholarCross Ref
    24. Kuttruff, H. 2007. Acoustics: An Introduction. Taylor and Francis, New York.Google Scholar
    25. Lentz, T., Schröder, D., Vorländer, M., and Assenmacher, I. 2007. Virtual reality system with integrated sound field simulation and reproduction. EURASIP Journal on Advances in Singal Processing 2007 (January), 187–187. Google ScholarDigital Library
    26. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In ACM Siggraph Computer Graphics, vol. 21, ACM, 163–169. Google ScholarDigital Library
    27. Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., and Manocha, D. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. on Graphics 32, 2, 19:1–19:13. Google ScholarDigital Library
    28. Mehra, R., Antani, L., Kim, S., and Manocha, D. 2014. Source and listener directivity for interactive wave-based sound propagation. Visualization and Computer Graphics, IEEE Transactions on 20, 4, 495–503. Google ScholarDigital Library
    29. Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., and Alloza, D. 2007. Progressive perceptual audio rendering of complex scenes. In Proceedings of Symposium on Interactive 3D graphics and games, ACM, 189–196. Google ScholarDigital Library
    30. Nironen, H. 2004. Diffuse Reflections in Room Acoustics Modelling. PhD thesis, Helsinki University of Technology.Google Scholar
    31. Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. Visualization and Computer Graphics, IEEE Transactions on 9, 2, 191–205. Google ScholarDigital Library
    32. Pelzer, S., and Vorländer, M. 2010. Frequency-and time-dependent geometry for real-time auralizations. In Proceedings of 20th International Congress on Acoustics, ICA.Google Scholar
    33. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju, N. 2010. Precomputed wave simualtion for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. on Graphics 29, 4, 68:1–68:11. Google ScholarDigital Library
    34. Savioja, L. 2010. Real-Time 3D Finite-Difference Time-Domain Simulation of Mid-Frequency Room Acoustics. In 13th International Conference on Digital Audio Effects (DAFx-10).Google Scholar
    35. Schissler, C., and Manocha, D. 2011. Gsound: Interactive sound propagation for games. In AES 41st International Conference: Audio for Games.Google Scholar
    36. Schroeder, M. R. 1962. Natural sounding artificial reverberation. Journal of the Audio Engineering Society 10, 3, 219–223.Google Scholar
    37. Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. The Journal of the Acoustical Society of America 122, 3 (September), 1624–1635.Google ScholarCross Ref
    38. Siltanen, S., Lokki, T., Savioja, L., and Lynge Christensen, C. 2008. Geometry reduction in room acoustics modeling. Acta Acustica united with Acustica 94, 3, 410–418.Google Scholar
    39. Svensson, U. P., Fred, R. I., and Vanderkooy, J. 1999. An analytic secondary source model of edge diffraction impulse responses. Acoustical Society of America Journal 106 (Nov.), 2331–2344.Google ScholarCross Ref
    40. Taylor, M., Chandak, A., Antani, L., and Manocha, D. 2009. Resound: interactive sound rendering for dynamic virtual environments. In MM ’09: Proceedings of the seventeen ACM international conference on Multimedia, ACM, 271–280. Google ScholarDigital Library
    41. Taylor, M., Chandak, A., Mo, Q., Lauterbach, C., Schissler, C., and Manocha, D. 2012. Guided multiview ray tracing for fast auralization. IEEE Transactions on Visualization and Computer Graphics 18, 1797–1810. Google ScholarDigital Library
    42. Thompson, L. L. 2006. A review of finite-element methods for time-harmonic acoustics. J. Acoustical Society of America 119, 3, 1315–1330.Google ScholarCross Ref
    43. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In SIGGRAPH 2001, Computer Graphics Proceedings, 545–552. Google ScholarDigital Library
    44. Tsingos, N., Gallo, E., and Drettakis, G. 2003. Perceptual audio rendering of complex virtual environments. Tech. Rep. RR-4734, INRIA, REVES/INRIA Sophia-Antipolis, Feb.Google Scholar
    45. Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. 2007. Instant sound scattering. In Proceedings of the Eurographics Symposium on Rendering, 111–120. Google ScholarDigital Library
    46. Tsingos, N. 2009. Pre-computing geometry-based reverberation effects for games. 35th AES Conference on Audio for Games.Google Scholar
    47. Vorländer, M. 1989. Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. The Journal of the Acoustical Society of America 86, 1, 172–178.Google ScholarCross Ref
    48. Wand, M., and Strasser, W. 2004. Multi-resolution sound rendering. In SPBG’04 Symposium on Point – Based Graphics 2004, 3–11. Google ScholarDigital Library
    49. Yeh, H., Mehra, R., Ren, Z., Antani, L., Manocha, D., and Lin, M. 2013. Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Trans. Graph. 32, 6, 165:1–165:11. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: