“Harmonic Parameterization by Electrostatics” by Wang, Sidorov, Sandilands and Komura

  • ©He Wang, Kirill Sidorov, Peter Sandilands, and Taku Komura




    Harmonic Parameterization by Electrostatics

Session/Category Title: Surfaces, Shapes, and Maps




    In this article, we introduce a method to apply ideas from electrostatics to parameterize the open space around an object. By simulating the object as a virtually charged conductor, we can define an object-centric coordinate system which we call Electric Coordinates. It parameterizes the outer space of a reference object in a way analogous to polar coordinates. We also introduce a measure that quantifies the extent to which an object is wrapped by a surface. This measure can be computed as the electric flux through the wrapping surface due to the electric field around the charged conductor. The electrostatic parameters, which comprise the Electric Coordinates and flux, have several applications in computer graphics, including: texturing, morphing, meshing, path planning relative to a target object, mesh parameterization, designing deformable objects, and computing coverage. Our method works for objects of arbitrary geometry and topology, and thus is applicable in a wide variety of scenarios.


    1. Au, O. K.-C., Fu, H., Tai, C.-L., and Cohen-Or, D. 2007. Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3.
    2. Berenstein, C. A. and Gay, R. 1997. Complex Variables: An Introduction. Springer.
    3. Blender Foundation. 2013. Blender. http://www.blender.org/.
    4. Blinn, J. F. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235–256.
    5. Davis, T. A. 2004. Algorithm 832: UMFPACK, an unsymmetricpattern multifrontal methodbl. ACM Trans. Math. Softw. 30, 2, 196–199.
    6. Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput. Aid. Geom. Des. 22, 5, 392–423.
    7. Floater, M. and Hormann, K. 2005. Surface parameterization: A tutorial and survey. http://graphics.stanford.edu/courses/cs468-05-fall/Papers/param-survey.pdf.
    8. Floater, M. S. 2003. Mean value coordinates. Comput. Aid. Geom. Des. 20, 1, 19–27.
    9. Goto, E., Shi, Y., and Yoshida, N. 1992. Extrapolated surface charge method for capacity calculation of polygons and polyhedra. J. Comput. Phys. 100, 1, 105–115.
    10. Goto, K. and Van De Geijn, R. 2008. High-performance implementation of the level-3 blas. ACM Trans. Math. Softw. 35, 1, 1–14.
    11. Gotsman, C., Gu, X., and Sheffer, A. 2003. Fundamentals of spherical parameterization for 3d meshes. ACM Trans. Graph. 22, 3, 358–363.
    12. Gu, X., Wang, Y., Chan, T. F., Thompson, P. M., and Yau, S.-T. 2004. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 8, 949–958.
    13. Gu, X. and Yau, S.-T. 2003. Global conformal surface parameterization. In Proceedings of the Symposium on Geometry Processing.
    14. Ho, E. S. L. and Komura, T. 2009. Character motion synthesis by topology coordinates. Comput. Graph. Forum 28, 2.
    15. Ho, E. S. L., Komura, T., and Tai, C.-L. 2010. Spatial relationship preserving character motion adaptation. ACM Trans. Graph. 29, 4.
    16. Igarashi, T. and Mitani, J. 2010. Apparent layer operations for the manipulation of deformable objects. ACM Trans. Graph. 29, 4.
    17. Igarashi, Y., Igarashi, T., and Suzuki, H. 2009. Interactive cover design considering physical constraints. Comput. Graph. Forum 28, 7.
    18. Joshi, P., Meyer, M., Derose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3.
    19. Ju, T. and Schaefer, S. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 561–566.
    20. Katsikadelis, J. T. 2002. Boundary Elements: Theory and Applications. Elsevier.
    21. Kazhdan, M., Klein, A., Dalal, K., and Hoppe, H. 2007. Unconstrained isosurface extraction on arbitrary octrees. In Proceedings of the 5th Eurographics Symposium on Geometry Processing. 125–133.
    22. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3.
    23. Malik, N. H. 1989. A review of the charge simulation method and its applications. IEEE Trans. Electr. Insul. 24, 1, 3–20.
    24. Matthews, P. C. 1998. Vector Calculus. Springer.
    25. Mccann, J. and Pollard, N. S. 2009. Local layering. ACM Trans. Graph. 28, 3.
    26. Nvidia. 2013. PhysX. http://www.nvidia.com/object/physx new.html.
    27. Peng, J., Kristjansson, D., and Zorin, D. 2004. Interactive modeling of topologically complex geometric detail. ACM Trans. Graph. 23, 3, 635–643.
    28. Perez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. Graph. 22, 3, 313–318.
    29. Perlin, K. and Hoffert, E. M. 1989. Hypertexture. In Proceedings of the 16th Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 253–262.
    30. Praun, E. and Hoppe, H. 2003. Spherical parametrization and remeshing. ACM Trans. Graph. 22, 3, 340–349.
    31. Schmid, J., Senn, M. S., Gross, M., and Sumner, R. W. 2011. Overcoat: An implicit canvas for 3d painting. ACM Trans. Graph. 30, 4, 28:1–28:10.
    32. Shapiro, A. and Tal, A. 1998. Polygon realization for shape transformation. The Vis. Comput. 14, 8–9, 429–444.
    33. Sheffer, A., Hormann, K., Levy, B., Desbrun, M., Zhou, K., Praun, E., and Hoppe, H. 2007. Mesh parameterization: Theory and practice. In ACM/SIGGRAPH Course Notes.
    34. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The princeton shape benchmark. In Proceedings of the IEEE International Conference on Shape Modeling Applications. 167–178.
    35. Spivak, M. 1965. Calculus on Manifolds. Vol. 1, Addison-Wesley.
    36. Stanford Computer Graphics Laboratory. 2013. The stanford 3d scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.
    37. Tamei, T., Matsubara, T., Rai, A., and Shibata, T. 2011. Reinforcement learning of clothing assistance with a dual-arm robot. In Proceedings of the 11th IEEE/RAS International Conference on Humanoid Robots. 733–738.
    38. Tatematsu, A., Hamada, S., and Takuma, T. 2000. Analytic expressions of potential and electric field generated by a triangular surface charge with second-order charge density. Trans. IEE Japan 120-A, 8/9, 853–854.
    39. Tatematsu, A., Hamada, S., and Takuma, T. 2002. Analytical expressions of potential and electric field generated by a triangular surface charge with a high-order charge density distribution. Electr. Engin. Japan 139, 3, 9–17.
    40. Van Oosterom, A. and Strackee, J. 1983. The solid angle of a plane triangle. IEEE Trans. Biomed. Engin. 30, 2, 125–126.
    41. Wang, H. and Komura, T. 2012. Manipulation of flexible objects by geodesic control. Comput. Graph. Forum 31, 2.
    42. Yoshizawa, S., Belyaev, A., and Seidel, H.-P. 2004. A fast and simple stretch-minimizing mesh parameterization. In Proceedings of the International Conference on Shape Modeling Applications (SMI’04). 200–208.

ACM Digital Library Publication:

Overview Page: