“Harmonic fluids” by Zheng and James

  • ©Changxi Zheng and Doug L. James

  • ©Changxi Zheng and Doug L. James

Conference:


Type(s):


Title:

    Harmonic fluids

Presenter(s)/Author(s):



Abstract:


    Fluid sounds, such as splashing and pouring, are ubiquitous and familiar but we lack physically based algorithms to synthesize them in computer animation or interactive virtual environments. We propose a practical method for automatic procedural synthesis of synchronized harmonic bubble-based sounds from 3D fluid animations. To avoid audio-rate time-stepping of compressible fluids, we acoustically augment existing incompressible fluid solvers with particle-based models for bubble creation, vibration, advection, and radiation. Sound radiation from harmonic fluid vibrations is modeled using a time-varying linear superposition of bubble oscillators. We weight each oscillator by its bubble-to-ear acoustic transfer function, which is modeled as a discrete Green’s function of the Helmholtz equation. To solve potentially millions of 3D Helmholtz problems, we propose a fast dual-domain multipole boundary-integral solver, with cost linear in the complexity of the fluid domain’s boundary. Enhancements are proposed for robust evaluation, noise elimination, acceleration, and parallelization. Examples are provided for water drops, pouring, babbling, and splashing phenomena, often with thousands of acoustic bubbles, and hundreds of thousands of transfer function solves.

References:


    1. Abramowitz, M., and Stegun, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York. Google ScholarDigital Library
    2. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively Sampled Particle Fluids. In Proc. ACM SIGGRAPH. Google ScholarDigital Library
    3. Begault, D. 1994. 3-D sound for virtual reality and multimedia. Academic Press Professional, Inc. San Diego, CA, USA. Google ScholarDigital Library
    4. Blake, W. 1986. Mechanics of Flow-Induced Sound and Vibration. Academic Press.Google Scholar
    5. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. on Graphics 27, 3 (Aug.), 24:1–24:9. Google ScholarDigital Library
    6. Bragg, S. 1920. The World of Sound. G. Bell and Sons Ltd., London.Google Scholar
    7. Brown, C. P., and Duda, R. O. 1998. A Structural Model for Binaural Sound Synthesis. IEEE Trans. on Speech and Audio Processing 6, 5.Google ScholarCross Ref
    8. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid Fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. on Graphics 23, 3 (Aug.), 377–384. Google ScholarDigital Library
    9. Chan, S., and Purisima, E. 1998. A new tetrahedral tesselation scheme for isosurface generation. Computers & Graphics 22, 1, 83–90.Google Scholar
    10. Childs, E. 2001. The Sonification of Numerical Fluid Flow Simulations. In Intl. Conf. on Auditory Display (ICAD 2001).Google Scholar
    11. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and Frothing Liquids. Proc. ACM SIGGRAPH. Google ScholarDigital Library
    12. Cook, P. 2002. Real Sound Synthesis for Interactive Applications. AK Peters, Ltd. Google ScholarDigital Library
    13. Deane, G. B. 1997. Sound generation and air entrainment by breaking waves in the surf zone. The Journal of the Acoustical Society of America 102 (November), 2671–2689.Google ScholarCross Ref
    14. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Realtime rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. on Graphics 22, 3 (July), 732–740. Google ScholarDigital Library
    15. Dobashi, Y., Yamamoto, T., and Nishita, T. 2004. Synthesizing sound from turbulent field using sound textures for interactive fluid simulation. Computer Graphics Forum 23, 3 (Sept.), 539–545.Google ScholarCross Ref
    16. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surface. ACM Trans. on Graphics 22, 3, 736–744. Google ScholarDigital Library
    17. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. Proc. ACM SIGGRAPH, 23–30. Google ScholarDigital Library
    18. Foster, N., and Metaxas, D. 1996. Realistic Animation of Liquids. Graphical Models and Image Processing 58, 5, 471–483. Google ScholarDigital Library
    19. Franz, G. J. 1959. Splashes as Sources of Sound in Liquids. Journal of the Acoustical Society of America 31 (Aug), 1080–1096.Google ScholarCross Ref
    20. Funkhouser, T. A., Min, P., and Carlbom, I. 1999. Realtime acoustic modeling for distributed virtual environments. In Proc. of SIGGRAPH 99, 365–374. Google ScholarDigital Library
    21. Golub, G., and van Loan, C. 1996. Matrix computations, third ed. Johns Hopkins University Press. Google ScholarDigital Library
    22. Greenwood, S., and House, D. 2004. Better with Bubbles: Enhancing the Visual Realism of Simulated Fluid. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation. Google ScholarDigital Library
    23. Gumerov, N., and Duraiswami, R. 2005. Fast multipole methods for the Helmholtz equation in three dimensions. Elsevier.Google Scholar
    24. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles alive. ACM Trans. on Graphics 27, 3 (Aug.), 48:1–48:4. Google ScholarDigital Library
    25. Howe, M. S. 1998. Acoustics of Fluid-Structure Interactions. Cambridge Press.Google Scholar
    26. Howe, M. S. 2002. Theory of Vortex Sound. Cambridge Press.Google Scholar
    27. Imura, M., Nakano, Y., Yasumuro, Y., Manabe, Y., and Chihara, K. 2007. Real-time generation of CG and sound of liquid with bubble. In ACM SIGGRAPH 2007 Posters. Google ScholarDigital Library
    28. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. on Graphics 25, 3 (July), 987–995. Google ScholarDigital Library
    29. Jensen, F. 1994. Computational Ocean Acoustics. American Institute of Physics.Google Scholar
    30. Kim, T., and Carlson, M. 2007. A simple boiling module. In Proc. of Symp. on Computer Animation (SCA). Google ScholarDigital Library
    31. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. on Graphics 26, 3 (July), 98:1–98:10. Google ScholarDigital Library
    32. Kita, E., and Kamiya, N. 1995. Trefftz method: An overview. Advances in Engineering Software 24, 89–96.Google ScholarCross Ref
    33. Kleiner, M., Dalenbaeck, B., and Svensson, P. 1993. Auralization-An Overview. Journal-Audio Engineering Society 41, 861–861.Google Scholar
    34. Leighton, T. 1994. The Acoustic Bubble. Academic Press.Google Scholar
    35. Longuet-Higgins, M. S. 1990. An analytic model of sound production by raindrops. J. Fluid Mech. 214, 395–410.Google ScholarCross Ref
    36. McCabe, R. K., and Rangwalla, A. A. 1994. Auditory display of computational fluid dynamics data. In Auditory Display: Sonication, Audication, and Auditory Interfaces; Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol. XVIII, Addison Wesley, G. Kramer, Ed., 321–340.Google Scholar
    37. Miner, N. E., and Caudell, T. P. 2005. Using wavelets to synthesize stochastic-based sounds for immersive virtual environments. ACM Trans. on Applied Perception 2, 4, 521–528. Google ScholarDigital Library
    38. Minnaert, M. 1933. On musical air-bubbles and sounds of running water. Phil Mag 16, 235–248.Google ScholarCross Ref
    39. O’Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proc. of ACM SIGGRAPH 2001, 529–536. Google ScholarDigital Library
    40. O’Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation (SCA), 175–181. Google ScholarDigital Library
    41. Ochmann, M. 1995. The Source Simulation Technique for Acoustic Radiation Problems. Acustica 81.Google Scholar
    42. Oguz, H., and Prosperetti, A. 1990. Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143–179.Google ScholarCross Ref
    43. Ohayon, R. 2004. Reduced models for fluid-structure interaction problems. Int. J. Numer. Meth. Engng 60, 1, 139–152.Google ScholarCross Ref
    44. Osher, S., and Fedkiw, R. 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer.Google Scholar
    45. Pumphery, H., Crum, L., and Bjørnø, L. 1989. Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Am. 85, 1518–1526.Google ScholarCross Ref
    46. Stam, J. 1999. Stable fluids. In Proc. ACM SIGGRAPH, 121–128. Google ScholarDigital Library
    47. Strasberg, M. 1953. The pulsation frequency of non-spherical gas bubbles in liquids. J. Acoust. Soc. Am. 25, 536–537.Google ScholarCross Ref
    48. Takala, T., and Hahn, J. 1992. Sound rendering. In Computer Graphics (Proc. of SIGGRAPH 92), 211–220. Google ScholarDigital Library
    49. Thuerey, N., Sadlo, F., Schirm, S., and M. Müller, M. G. 2007. Real-time simulations of bubbles and foam within a shallow-water framework. In Proc. of Symp. on Computer Animation (SCA). Google ScholarDigital Library
    50. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc. of ACM SIGGRAPH 2001, 545–552. Google ScholarDigital Library
    51. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Trans. on Graphics 23, 3 (Aug.), 249–258. Google ScholarDigital Library
    52. Urick, R. 1975. Principles of Underwater Sound. McGraw-Hill.Google Scholar
    53. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Intl. Conf. on Auditory Display (ICAD 96).Google Scholar
    54. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically-Based Sound Effects for Interactive Simulation and Animation. In Proc. of ACM SIGGRAPH 2001, 537–544. Google ScholarDigital Library
    55. van den Doel, K. 2005. Physically based models for liquid sounds. ACM Trans. on Applied Perception 2, 4, 534–546. Google ScholarDigital Library
    56. Vorlander, M. 2007. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer Verlag. Google ScholarDigital Library
    57. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Proc. of Symp. on Computer Animation (SCA), 325–333. Google ScholarDigital Library
    58. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graphics 24, 3 (Aug.), 965–972. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: