“Hair photobooth: geometric and photometric acquisition of real hairstyles” by Paris, Chang, Kozhushnyan, Jarosz, Matusik, et al. …

  • ©Sylvain Paris, Will Chang, Oleg I. Kozhushnyan, Wojciech Jarosz, Wojciech Matusik, Matthias Zwicker, and Frédo Durand

Conference:


Type:


Title:

    Hair photobooth: geometric and photometric acquisition of real hairstyles

Presenter(s)/Author(s):



Abstract:


    We accurately capture the shape and appearance of a person’s hairstyle. We use triangulation and a sweep with planes of light for the geometry. Multiple projectors and cameras address the challenges raised by the reflectance and intricate geometry of hair. We introduce the use of structure tensors to infer the hidden geometry between the hair surface and the scalp. Our triangulation approach affords substantial accuracy improvement and we are able to measure elaborate hair geometry including complex curls and concavities. To reproduce the hair appearance, we capture a six-dimensional reflectance field. We introduce a new reflectance interpolation technique that leverages an analytical reflectance model to alleviate cross-fading artifacts caused by linear methods. Our results closely match the real hairstyles and can be used for animation.

References:


    1. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2. Google ScholarDigital Library
    2. Blais, F. 2004. Review of 20 years of range sensor development. Journal of Electronic Imaging 13, 1.Google ScholarCross Ref
    3. Curless, B., and Levoy, M. 1995. Better optical triangulation through spacetime analysis. In Proc. of the International Conference on Computer Vision. Google ScholarDigital Library
    4. Curless, B. 1997. New methods for surface reconstruction from range images. PhD thesis, Stanford University. Google ScholarDigital Library
    5. Davis, J., Ramamoorthi, R., and Rusinkiewicz, S. 2003. Spacetime stereo: A unifying framework for depth from triangulation. In Proc. of the Conference on Computer Vision and Pattern Recognition.Google Scholar
    6. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    7. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    8. Grabli, S., Sillion, F., Marschner, S. R., and Lengyel, J. E. 2002. Image-based hair capture by inverse lighting. In Proc. of the Graphics Interface conference.Google Scholar
    9. Granlund, G. H., and Knutsson, H. 1994. Signal Processing for Computer Vision. Springer. ISBN 978-0-7923-9530-0. Google ScholarDigital Library
    10. Hasinoff, S. W., and Kutulakos, K. N. 2006. Confocal stereo. In Proc. of the European Conference on Computer Vision. Google ScholarDigital Library
    11. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. ACM Transactions on Graphics 24, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    12. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    13. Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    14. Kautz, J., Sattler, M., Sarlette, R., Klein, R., and Seidel, H.-P. 2004. Decoupling BRDFs from surface mesostructures. In Proc. of the Graphics Interface conf. Google ScholarDigital Library
    15. Lensch, H., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2001. Image-based reconstruction of spatially varying materials. In Proc. of the Eurographics Workshop on Rendering. Google ScholarDigital Library
    16. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital Michelangelo project: 3D scanning of large statues. In Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    17. Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Transactions on Graphics 22, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    18. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., and McMillan, L. 2002. Image-based 3D photography using opacity hulls. ACM Transactions on Graphics 21, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    19. Mihashi, T., Tempelaar-Lietz, C., and Borshukov, G. 2003. Generating realistic humain hair for “the matrix reloaded”. In Proc. of the ACM SIGGRAPH conference. Technical Sketch. Google ScholarDigital Library
    20. Narasimhan, S. G., Nayar, S. K., Sun, B., and Koppal, S. J. 2005. Structured light in scattering media. In Proc. of the International Conference on Computer Vision. Google ScholarDigital Library
    21. Paris, S., Briceño, H., and Sillion, F. 2004. Capture of hair geometry from multiple images. ACM Transactions on Graphics 23, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    22. Pulli, K. 1997. Surface Reconstruction and Display from Range and Color Data. PhD thesis, University of Washington. Google ScholarDigital Library
    23. Reche, A., Martin, I., and Drettakis, G. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Transactions on Graphics 23, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    24. Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM Transactions on Graphics 21, 3 (July), 438–446. Google ScholarDigital Library
    25. Ward, K., Bertails, F., Kim, T., Marschner, S. R., Cani, M.-P., and Lin, M. 2006. A survey on hair modeling: Styling, simulation, and rendering. IEEE Transactions on Visualization and Computer Graphics. Google ScholarDigital Library
    26. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Transactions on Graphics 24, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    27. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. 2005. Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Transactions on Graphics 24, 3. Proc. of the ACM SIGGRAPH conf. Google ScholarDigital Library
    28. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Transactions on Graphics 25, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    29. Zhang, L., Curless, B., and Seitz, S. M. 2003. Spacetime stereo: shape recovery for dynamic scenes. In Proc. of the conf. on Computer Vision and Pattern Recognition.Google Scholar
    30. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: High-resolution capture for modeling and animation. ACM Transactions on Graphics 23, 3. Proc. of the ACM SIGGRAPH conference. Google ScholarDigital Library
    31. Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 11. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: