“Guided exploration of physically valid shapes for furniture design” by Umetani, Igarashi and Mitra

  • ©Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra




    Guided exploration of physically valid shapes for furniture design



    Geometric modeling and the physical validity of shapes are traditionally considered independently. This makes creating aesthetically pleasing yet physically valid models challenging. We propose an interactive design framework for efficient and intuitive exploration of geometrically and physically valid shapes. During any geometric editing operation, the proposed system continuously visualizes the valid range of the parameter being edited. When one or more constraints are violated after an operation, the system generates multiple suggestions involving both discrete and continuous changes to restore validity. Each suggestion also comes with an editing mode that simultaneously adjusts multiple parameters in a coordinated way to maintain validity. Thus, while the user focuses on the aesthetic aspects of the design, our computational design framework helps to achieve physical realizability by providing active guidance to the user. We demonstrate our framework on plank-based furniture design with nail-joint and frictional constraints. We use our system to design a range of examples, conduct a user study, and also fabricate a physical prototype to test the validity and usefulness of the system.


    1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM TOG (SIGG.) 29, 60:1–60:7. Google ScholarDigital Library
    2. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In ACM SIGGRAPH, 23–34. Google ScholarDigital Library
    3. Bergman, R. 2010. Wood Handbook — Wood as an Engineering Material. Forest Products Laboratory.Google Scholar
    4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM TOG (SIGG.) 29, 63:1–63:10. Google ScholarDigital Library
    5. Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity support in 3D modeling. ACM TOG (SIGG. Asia) 29, 183:1–183:10. Google ScholarDigital Library
    6. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM TOG (SIGG.) 30, 35:1–35:10. Google ScholarDigital Library
    7. Chenney, S., and Forsyth, D. A. 2000. Sampling plausible solutions to multi-body constraint problems. In ACM SIGGRAPH, 219–228. Google ScholarDigital Library
    8. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM TOG (SIGG.) 29, 4 (July), 45:1–45:10. Google ScholarDigital Library
    9. Erleben, K., Sporring, J., Henriksen, K., and Dohlmann, H. 2005. Physics Based Animation (Graphics Series). Charles River Media, 8. Google ScholarDigital Library
    10. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. In ACM TOG (SIGG.), 652–663. Google ScholarDigital Library
    11. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: an analyze-and-edit approach to shape manipulation. ACM TOG (SIGG.) 28, 33:1–33:10. Google ScholarDigital Library
    12. Geradin, M., and Cardona, A. 2001. Flexible Multibody Dynamics: A Finite Element Approach, 1 ed. Wiley, 2.Google Scholar
    13. Igarashi, T., and Hughes, J. F. 2001. A suggestive interface for 3D drawing. In UIST, 173–181. Google ScholarDigital Library
    14. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM TOG (SIGG. Asia) 27, 5, 164:1–164:11. Google ScholarDigital Library
    15. Kerr, W. B., and Pellacini, F. 2010. Toward evaluating material design interface paradigms for novice users. In ACM TOG (SIGG.), 35:1–35:10. Google ScholarDigital Library
    16. Klarbring, A. 1990. Examples of non-uniqueness and non-existence of solutions to quasistatic contact problems with friction. Archive of Applied Mechanics 60, 529–541.Google Scholar
    17. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM TOG (SIGG.) 30, 87:1–87:10. Google ScholarDigital Library
    18. Mitra, N. J., and Pauly, M. 2009. Shadow art. In ACM TOG (SIGG. Asia), 156:1–156:7. Google ScholarDigital Library
    19. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. In ACM TOG (SIGG.), 33:1–33:10. Google ScholarDigital Library
    20. Paczkowski, P., Kim, M. H., Morvan, Y., Dorsey, J., Rushmeier, H., and O’Sullivan, C. 2011. Insitu: sketching architectural designs in context. SIGG. Asia 30, 182:1–182:10. Google Scholar
    21. Parker, H., and Ambrose, J. 1997. Simplified Design of Wood Structures. Wiley.Google Scholar
    22. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In ACM SIGGRAPH, 209–217. Google ScholarDigital Library
    23. Shapira, L., Shamir, A., and Cohen-Or, D. 2009. Image appearance exploration by model-based navigation. CGF (EUROGRAPHICS), 629–638.Google Scholar
    24. Singh, M., and Schaefer, S. 2010. Triangle surfaces with discrete equivalence classes. ACM TOG (SIGG.) 29, 46:1–46:7. Google ScholarDigital Library
    25. Smith, J., Hodgins, J. K., Oppenheim, I., and Witkin, A. 2002. Creating models of truss structures with optimization. ACM SIGGRAPH 21, 1, 295–301. Google ScholarDigital Library
    26. Stewart, D., and Trinkle, J. 2000. An implicit time-stepping scheme for rigid body dynamics with coulomb friction. In IEEE ICRA, vol. 1, 162–169.Google Scholar
    27. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM TOG (SIGG. Asia) 28, 167:1–167:10. Google ScholarDigital Library
    28. Twigg, C. D., and James, D. L. 2008. Backwards steps in rigid body simulation. ACM TOG (SIGG.), 25:1–25:10. Google ScholarDigital Library
    29. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. In ACM TOG (SIGG.), 90:1–90:12. Google ScholarDigital Library
    30. van Keulen, F., Haftka, R., and Kim, N. 2005. Review of options for structural design sensitivity analysis. part 1: Linear systems. Proc. CMAME 194, 30-33, 3213–3243.Google ScholarCross Ref
    31. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM TOG (SIGG. Asia) 28, 5, 112. Google ScholarDigital Library
    32. Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM TOG (SIGG. Asia) 30, 6. Google ScholarDigital Library
    33. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. J. 2011. Make it home: automatic optimization of furniture arrangement. ACM TOG (SIGG.) 30, 86:1–86:12. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: