“GRIDiron: an interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures”

  • ©

Conference:


Type(s):


Title:

    GRIDiron: an interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures

Session/Category Title:   Modeling, Controlling, and Suturing Humans


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present an interactive simulation framework for authoring surgical procedures of soft tissue manipulation using physics-based simulation to animate the flesh. This interactive authoring tool can be used by clinical educators to craft three-dimensional illustrations of the intricate maneuvers involved in craniofacial repairs, in contrast to two-dimensional sketches and still photographs which are the medium used to describe these procedures in the traditional surgical curriculum. Our virtual environment also allows surgeons-intraining to develop cognitive skills for craniofacial surgery by experimenting with different approaches to reconstructive challenges, adapting stock techniques to flesh regions with nonstandard shape, and reach preliminary predictions about the feasibility of a given repair plan. We use a Cartesian grid-based embedded discretization of nonlinear elasticity to maximize regularity, and expose opportunities for aggressive multithreading and SIMD accelerations. Using a grid-based approach facilitates performance and scalability, but constrains our ability to capture the topology of thin surgical incisions. We circumvent this restriction by hybridizing the grid-based discretization with an explicit hexahedral mesh representation in regions where the embedding mesh necessitates overlap or nonmanifold connectivity. Finally, we detail how the front-end of our system can run on lightweight clients, while the core simulation capability can be hosted on a dedicated server and delivered as a network service.

References:


    1. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L., et al. 2007. SOFA – an Open Source Framework for Medical Simulation. In MMVR 15, IOS Press.Google Scholar
    2. Baker, S. R. 2014. Local Flaps in Facial Reconstruction (3rd ed.). Saunders.Google Scholar
    3. Bro-nielsen, M., and Cotin, S. 1996. Real-time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation. In Computer Graphics Forum, 57–66.Google Scholar
    4. Cavusoglu, M. C., Goktekin, T. G., and Tendick, F. 2006. GiPSi: A Framework for Open Source/Open Architecture Software Development for Organ-Level Surgical Simulation. Information Technology in Biomedicine, IEEE Transactions on 10, 2, 312–322. Google ScholarDigital Library
    5. Chen, D. T., and Zeltzer, D. 1992. Pump It Up: Computer Animation of a Biomechanically Based Model of Muscle Using the Finite Element Method. SIGGRAPH Comput. Graph. 26, 2 (July), 89–98. Google ScholarDigital Library
    6. Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K. K., Goldberg, K., Shewchuk, J. R., and O’Brien, J. F. 2009. Interactive Simulation of Surgical Needle Insertion and Steering. ACM Trans. Graph. 28, 3 (July), 88:1–88:10. Google ScholarDigital Library
    7. Courtecuisse, H., and Allard, J. 2009. Parallel Dense Gauss-Seidel Algorithm on Many-Core Processors. IEEE CS Press, HPCC ’09, 139–147. Google ScholarDigital Library
    8. De, S., and Bathe, K. 2000. The method of finite spheres. Computational Mechanics 25, 329–345.Google ScholarCross Ref
    9. De, S., Kim, J., Lim, Y.-J., and Srinivasan, M. A. 2005. The point collocation-based method of finite spheres (PCMFS) for real time surgery simulation. Computers & Structures 83, 17-18, 1515–1525. Google ScholarDigital Library
    10. Dick, C., Georgii, J., and Westermann, R. 2011. A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects. IEEE Transactions on Visualization and Computer Graphics 17, 11, 1663–1675. Google ScholarDigital Library
    11. Fan, Y., Litven, J., and Pai, D. K. 2014. Active Volumetric Musculoskeletal Systems. ACM Trans. Graph. 33, 4 (July), 152:1–152:9. Google ScholarDigital Library
    12. Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., Smith, C. D., and Satava, R. M. 2005. Virtual Reality Simulation for the Operating Room: Proficiency-Based Training as a Paradigm Shift in Surgical Skills Training. Annals of Surgery 241, 2.Google ScholarCross Ref
    13. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A Method for Animating Viscoelastic Fluids. ACM Trans. Graph. 23, 3 (Aug.), 463–468. Google ScholarDigital Library
    14. Hermann, E., Raffin, B., and Faure, F. 2009. Interactive Physical Simulation on Multicore Architectures. Eurographics Association, EG PGV’09, 1–8. Google ScholarDigital Library
    15. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. Eurographics Association, SCA ’04, 131–140. Google ScholarDigital Library
    16. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume Conserving Finite Element Simulations of Deformable Models. ACM Transactions on Graphics (SIGGRAPH Proc.) 26, 3. Google ScholarDigital Library
    17. James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate Real Time Deformable Objects. ACM Press/Addison-Wesley Publishing Co., SIGGRAPH ’99, 65–72. Google ScholarDigital Library
    18. Jerabkova, L., Bousquet, G., Barbier, S., Faure, F., and Allard, J. 2010. Volumetric modeling and interactive cutting of deformable bodies. Progress in Biophysics and Molecular Biology 103, 2-3 (Dec.), 217–224. Special Issue on Biomechanical Modelling of Soft Tissue Motion.Google ScholarCross Ref
    19. Jeřábková, L., and Kuhlen, T. 2009. Stable Cutting of Deformable Objects in Virtual Environments Using XFEM. IEEE Comput. Graph. Appl. 29, 2, 61–71. Google ScholarDigital Library
    20. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    21. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2009. Flexible Simulation of Deformable Models Using Discontinuous Galerkin FEM. Graph. Models 71, 4 (July), 153–167. Google ScholarDigital Library
    22. Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. 2008. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph. 27, 4 (Nov.), 105:1–105:23. Google ScholarDigital Library
    23. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3 (July), 51:1–51:8. Google ScholarDigital Library
    24. Kim, J., and Pollard, N. S. 2011. Fast Simulation of Skeleton-driven Deformable Body Characters. ACM Trans. Graph. 30, 5 (Oct.), 121:1–121:19. Google ScholarDigital Library
    25. Kim, J., Choi, C., De, S., and Srinivasan, M. A. 2007. Virtual surgery simulation for medical training using multi-resolution organ models. The International Journal of Medical Robotics and Computer Assisted Surgery 3, 2, 149–158.Google ScholarCross Ref
    26. Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013. Thin Skin Elastodynamics. ACM Trans. Graph. 32, 4 (July), 49:1–49:10. Google ScholarDigital Library
    27. Lindblad, A., and Turkiyyah, G. 2007. A Physically-based Framework for Real-time Haptic Cutting and Interaction with 3D Continuum Models. ACM, SPM ’07, 421–429. Google ScholarDigital Library
    28. Marchal, M., Allard, J., Duriez, C., and Cotin, S. 2008. Towards a Framework for Assessing Deformable Models in Medical Simulation. In ISBMS ’08, P. J. E. Fernando Bello, Ed., vol. 5104 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 176–184. Google ScholarDigital Library
    29. McAdams, A., Sifakis, E., and Teran, J. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. Eurographics Association, SCA ’10, 65–74. Google ScholarDigital Library
    30. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4 (July), 37:1–37:12. Google ScholarDigital Library
    31. Mendoza, C., and Laugier, C. 2003. Simulating Soft Tissue Cutting using Finite Element Models. vol. 1 of ICRA ’03, IEEE, 1109–1114.Google Scholar
    32. Molino, N., Bao, Z., and Fedkiw, R. 2004. A Virtual Node Algorithm for Changing Mesh Topology During Simulation. ACM Trans. Graph. 23, 3 (Aug.), 385–392. Google ScholarDigital Library
    33. Müller, M., Teschner, M., and Gross, M. 2004. Physically-Based simulation of Objects Represented by Surface Meshes. CGI ’04, 156–165.Google Scholar
    34. Nesme, M., Payan, Y., and Faure, F. 2006. Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness. EG VRIPHYS ’06, Eurographics.Google Scholar
    35. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving Topology and Elasticity for Embedded Deformable Models. ACM Trans. Graph. 28, 3 (July), 52:1–52:9. Google ScholarDigital Library
    36. Nienhuys, H.-W., and van der Stappen, A. F. 2001. A Surgery Simulation Supporting Cuts and Finite Element Deformation. MICCAI ’01, Springer, 145–152. Google ScholarDigital Library
    37. O’Brien, J., and Hodgins, J. 1999. Graphical Modeling and Animation of Brittle Fracture. In Proc. of SIGGRAPH 1999, 137–146. Google ScholarDigital Library
    38. Patterson, T., Mitchell, N., and Sifakis, E. 2012. Simulation of Complex Nonlinear Elastic Bodies Using Lattice Deformers. ACM Trans. Graph. 31, 6 (Nov.), 197:1–197:10. Google ScholarDigital Library
    39. Pieper, S. D., Laub Jr, D. R., and Rosen, J. M. 1995. A Finite-Element Facial Model for Simulating Plastic Surgery. Plastic and Reconstructive Surgery 96, 5, 1100–1105.Google ScholarCross Ref
    40. Rivers, A., and James, D. 2007. FastLSM: Fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics (SIGGRAPH Proc.) 26, 3. Google ScholarDigital Library
    41. Sifakis, E., and Barbic, J. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM SIG. 2012 Courses, ACM, SIGGRAPH ’12, 20:1–20:50. Google ScholarDigital Library
    42. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary Cutting of Deformable Tetrahedralized Objects. Eurographics Association, SCA ’07, 73–80. Google ScholarDigital Library
    43. Simbionix USA Corporation, 2002–2014. Gastrointestinal Simulator – GI Mentor Simbionix. http://simbionix.com/simulators/gi-bronch-gi-mentor.Google Scholar
    44. Simbionix USA Corporation, 2002–2014. Laparoscopic Simulator – LAP Mentor Simbionix. http://simbionix.com/simulators/lap-mentor.Google Scholar
    45. Sin, F., Schroeder, D., and Barbic, J. 2013. Vega: Non-Linear FEM Deformable Object Simulator. Comput. Graph. Forum 32, 1, 36–48.Google ScholarCross Ref
    46. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon Simulation for Hand Animation. ACM Trans. Graph. 27, 3 (Aug.), 83:1–83:8. Google ScholarDigital Library
    47. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite Volume Methods for the Simulation of Skeletal Muscle. SCA ’03, 68–74. Google ScholarDigital Library
    48. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust Quasistatic Finite Elements and Flesh Simulation. Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 181–190. Google ScholarDigital Library
    49. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and Simulating Skeletal Muscle from the Visible Human Data Set. Visualization and Computer Graphics, IEEE Transactions on 11, 3, 317–328. Google ScholarDigital Library
    50. Terzopoulos, D., and Fleischer, K. 1988. Modeling In-elastic Deformation: Viscolelasticity, Plasticity, Fracture. SIGGRAPH Comput. Graph. 22, 4 (June), 269–278. Google ScholarDigital Library
    51. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically Deformable Models. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 205–214. Google ScholarDigital Library
    52. Wang, X. C., and Phillips, C. 2002. Multi-weight Enveloping: Least-squares Approximation Techniques for Skin Animation. ACM, SCA ’02, 129–138. Google ScholarDigital Library
    53. Wojtan, C., and Turk, G. 2008. Fast Viscoelastic Behavior with Thin Features. ACM Trans. Graph. 27, 3 (Aug.), 47:1–47:8. Google ScholarDigital Library
    54. Zhao, Y., and Barbič, J. 2013. Interactive Authoring of Simulation-Ready Plants. ACM Trans. on Graphics (SIGGRAPH 2013) 32, 4, 84:1–84:12. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: