“Green Coordinates” by Lipman, Levin and Cohen-Or

  • ©Yaron Lipman, David I. W. Levin, and Daniel Cohen-Or




    Green Coordinates



    We introduce Green Coordinates for closed polyhedral cages. The coordinates are motivated by Green’s third integral identity and respect both the vertices position and faces orientation of the cage. We show that Green Coordinates lead to space deformations with a shape-preserving property. In particular, in 2D they induce conformal mappings, and extend naturally to quasi-conformal mappings in 3D. In both cases we derive closed-form expressions for the coordinates, yielding a simple and fast algorithm for cage-based space deformation. We compare the performance of Green Coordinates with those of Mean Value Coordinates and Harmonic Coordinates and show that the advantage of the shape-preserving property is not achieved at the expense of speed or simplicity. We also show that the new coordinates extend the mapping in a natural analytic manner to the exterior of the cage, allowing the employment of partial cages.


    1. Au, O. K.-C., Fu, H., Tai, C.-L., And Cohen-OR, D. 2007. Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3, 83. Google ScholarDigital Library
    2. Blair, D. E. 2000. Inversion Theory and Conformal Mapping. American Mathematical Society.Google Scholar
    3. Botsch, M., and Kobbelt, L. 2005. Real-time shape editing using radial basis functions. Computer Graphics Forum 24, 3, 611–621.Google ScholarCross Ref
    4. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: coupled prisms for intuitive surface modeling. In SGP ’06, 11–20. Google ScholarDigital Library
    5. Coquillart, S. 1990. Extended free-form deformation: a sculpturing tool for 3d geometric modeling. Proceedings of SIGGRAPH ’90, 187–196. Google ScholarDigital Library
    6. Floater, M. S., Kos, G., and Reimers, M. 2005. Mean value coordinates in 3d. Computer Aided Geometric Design 22, 7, 623–631. Google ScholarDigital Library
    7. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19–27. Google ScholarDigital Library
    8. Hormann, K., and Floater, M. S. 2006. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics 25, 4, 1424–1441. Google ScholarDigital Library
    9. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126–1134. Google ScholarDigital Library
    10. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. Transactions on Graphics 26, 3 (Proc. SIGGRAPH). Ju, T., Schaefer, S., Warren, J., and Desbrun, M. 2005. A geometric construction of coordinates for convex polyhedra using polar duals. In SGP ’05, 181. Google ScholarDigital Library
    11. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. vol. 24, 3 (Proc. SIGGRAPH), 561–566. Google ScholarDigital Library
    12. Kantorovich, L. V., and Krylov, V. I. 1964. Approximate methods of higher analysis. Interscience Publishers, INC.Google Scholar
    13. Kobayashi, K. G., and Ootsubo, K. 2003. t-ffd: free-form deformation by using triangular mesh. In SM ’03, 226–234. Google ScholarDigital Library
    14. Kojekine, N., Savchenko, V., Senin, M., and Hagiwara, I., 2002. Real-time 3d deformations by means of compactly supported radial basis functions.Google Scholar
    15. Langer, T., Belyaev, A., and Seidel, H.-P. 2006. Spherical Barycentric Coordinates. 81–88. Google ScholarDigital Library
    16. Lipman, Y., and Levin, D. 2008. On the derivation of green coordinates. Technical Report.Google Scholar
    17. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. In Proceedings of ACM SIGGRAPH 2005, ACM Press, 479–487. Google ScholarDigital Library
    18. Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. Gpu-assisted positive mean value coordinates for mesh deformations. In SGP ’07, 117–123. Google ScholarDigital Library
    19. MacCracken, R., and Joy, K. I. 1996. Free-form deformations with lattices of arbitrary topology. In SIGGRAPH ’96, 181–188. Google ScholarDigital Library
    20. Meyer, M., Barr, A., Lee, H., and Desbrun, M. 2002. Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7, 1, 13–22. Google ScholarDigital Library
    21. Nehari, Z. 1952. Conformal mapping. McGraw-Hill.Google Scholar
    22. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics.Google Scholar
    23. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH ’86, 151–160. Google ScholarDigital Library
    24. Sheldon Axler, Paul Bourdon, R. W. 2001. Harmonic Function Theory. Springer.Google Scholar
    25. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3, 81. Google ScholarDigital Library
    26. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In SGP ’07: Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 109–116. Google ScholarDigital Library
    27. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In SGP ’04, 179–188. Google ScholarDigital Library
    28. Wachpress, E. 1975. A rational finite element basis. manuscript.Google Scholar
    29. Warren, J. 1996. Barycentric coordinates for convex polytopes. Advances in Computational Mathematics 6, 2, 97–108.Google ScholarCross Ref
    30. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3, 644–651. Google ScholarDigital Library
    31. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24, 3, 496–503. Google ScholarDigital Library

ACM Digital Library Publication: