“Gradient-domain path tracing” by Kettunen, Manzi, Aittala, Lehtinen, Durand, et al. …

  • ©Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker




    Gradient-domain path tracing



    We introduce gradient-domain rendering for Monte Carlo image synthesis. While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results.


    1. Belcour, L., Soler, C., Subr, K., Holzschuch, N., and Durand, F. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32, 3 (July), 31:1–31:18. Google ScholarDigital Library
    2. Belcour, L., Bala, K., and Soler, C. 2014. A local frequency analysis of light scattering and absorption. ACM Trans. Graph. 33, 5 (Aug.). Google ScholarDigital Library
    3. Bhat, P., Curless, B., Cohen, M., and Zitnick, C. 2008. Fourier analysis of the 2D screened poisson equation for gradient domain problems. In Computer Vision, ECCV 2008, vol. 5303 of Lecture Notes in Computer Science. Springer, 114–128. Google ScholarDigital Library
    4. Bhat, P., Zitnick, L., Cohen, M., and Curless, B. 2010. GradientShop: A gradient-domain optimization framework for image and video filtering. ACM Trans. Graph. 29, 2, 10:1–10:14. Google ScholarDigital Library
    5. Bolin, M. R., and Meyer, G. W. 1995. A frequency based ray tracer. In Proc. ACM SIGGRAPH 95, 409–418. Google ScholarDigital Library
    6. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. SIGGRAPH Comput. Graph. 19, 3 (July), 69–78. Google ScholarDigital Library
    7. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3, 1115–1126. Google ScholarDigital Library
    8. Durand, F. 2011. A frequency analysis of Monte Carlo and other numerical integration schemes. Tech. Rep. MIT-CSAIL-TR-2011-052, MIT CSAIL.Google Scholar
    9. Georgiev, T. 2005. Image reconstruction invariant to relighting. In Proc. Eurographics 2005, 61–64.Google Scholar
    10. Igehy, H. 1999. Tracing ray differentials. In Proc. ACM SIGGRAPH ’99, 179–186. Google ScholarDigital Library
    11. Jakob, W., and Marschner, S. 2012. Manifold exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4, 58:1–58:13. Google ScholarDigital Library
    12. Jakob, W., 2012. Mitsuba v0.4. http://mitsuba-renderer.org.Google Scholar
    13. Jarosz, W., Donner, C., Zwicker, M., and Jensen, H. W. 2008. Radiance caching for participating media. ACM Trans. Graph. 27, 1 (Mar.). Google ScholarDigital Library
    14. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. Irradiance gradients in the presence of participating media and occlusions. Computer Graphics Forum 27, 4 (June), 1087–1096. Google ScholarDigital Library
    15. Jarosz, W., Schönefeld, V., Kobbelt, L., and Jensen, H. W. 2012. Theory, analysis and applications of 2D global illumination. ACM Trans. Graph. 31, 5 (Sept.), 125:1–125:21. Google ScholarDigital Library
    16. Kajiya, J. T. 1986. The rendering equation. In Proc. ACM SIGGRAPH 86, 143–150. Google ScholarDigital Library
    17. Kaplanyan, A. S., Hanika, J., and Dachsbacher, C. 2014. The natural-constraint representation of the path space for efficient light transport simulation. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
    18. Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3, 531–540.Google ScholarCross Ref
    19. Křivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005. Radiance caching for efficient global illumination computation. IEEE Trans. Vis. and Compu. Graph., 11, 5, 550–561. Google ScholarDigital Library
    20. Lehtinen, J., Karras, T., Laine, S., Aittala, M., Durand, F., and Aila, T. 2013. Gradient-domain metropolis light transport. ACM Trans. Graph. 32, 4, 95:1–95:12. Google ScholarDigital Library
    21. Leneman, O. A. 1966. Random sampling of random processes: Impulse processes. Information and Control 9, 4, 347–363.Google ScholarCross Ref
    22. Li, T.-M., Wu, Y.-T., and Chuang, Y.-Y. 2012. Sure-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6, 194:1–194:9. Google ScholarDigital Library
    23. Manzi, M., Rousselle, F., Kettunen, M., Lehtinen, J., and Zwicker, M. 2014. Improved sampling for gradient-domain metropolis light transport. ACM Trans. Graph. 33, 6 (Nov.), 178:1–178:12. Google ScholarDigital Library
    24. Overbeck, R., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 140:1–140:12. Google ScholarDigital Library
    25. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. Graph. 22, 3, 313–318. Google ScholarDigital Library
    26. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1 (Jan.). Google ScholarDigital Library
    27. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1–159:12. Google ScholarDigital Library
    28. Rousselle, F., Manzi, M., and Zwicker, M. 2013. Robust denoising using feature and color information. Computer Graphics Forum 32, 7, 121–130.Google ScholarCross Ref
    29. Ruderman, D. 1994. The statistics of natural images. Network: computation in neural systems 5, 4, 517–548.Google Scholar
    30. Schwarzhaupt, J., Jensen, H. W., and Jarosz, W. 2012. Practical Hessian-based error control for irradiance caching. ACM Trans. Graph. 31, 6 (Nov.), 193:1–193:10. Google ScholarDigital Library
    31. Sen, P., and Darabi, S. 2012. On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3 (June), 18:1–18:15. Google ScholarDigital Library
    32. Simoncelli, E. P., and Olshausen, B. A. 2001. Natural image statistics and neural representation. Annual Review of Neuroscience 24, 1193–1216.Google ScholarCross Ref
    33. Stam, J. 2001. An illumination model for a skin layer bounded by rough surfaces. In Rendering Techniques 2001, S. Gortler and K. Myszkowski, Eds., Eurographics. Springer, 39–52. Google ScholarDigital Library
    34. Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why I want a gradient camera. In Proc. CVPR’05, 103–110. Google ScholarDigital Library
    35. Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In Proc. ACM SIGGRAPH 95, 419–428. Google ScholarDigital Library
    36. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Proc. ACM SIGGRAPH 97, 65–76. Google ScholarDigital Library
    37. Ward, G. J., and Heckbert, P. 1992. Irradiance gradients. In Proc. Eurographics Workshop on Rendering ’92, 85–98.Google Scholar
    38. Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proc. ACM SIGGRAPH ’88, 85–92. Google ScholarDigital Library

ACM Digital Library Publication: