“Gradient domain editing of deforming mesh sequences” by Xu, Zhou, Yu, Tan, Peng, et al. …

  • ©Weiwei Xu, Kun Zhou, Yizhou Yu, Qifeng Tan, Qun-Sheng Peng, and Baining Guo




    Gradient domain editing of deforming mesh sequences



    Many graphics applications, including computer games and 3D animated films, make heavy use of deforming mesh sequences. In this paper, we generalize gradient domain editing to deforming mesh sequences. Our framework is keyframe based. Given sparse and irregularly distributed constraints at unevenly spaced keyframes, our solution first adjusts the meshes at the keyframes to satisfy these constraints, and then smoothly propagate the constraints and deformations at keyframes to the whole sequence to generate new deforming mesh sequence. To achieve convenient keyframe editing, we have developed an efficient alternating least-squares method. It harnesses the power of subspace deformation and two-pass linear methods to achieve high-quality deformations. We have also developed an effective algorithm to define boundary conditions for all frames using handle trajectory editing. Our deforming mesh editing framework has been successfully applied to a number of editing scenarios with increasing complexity, including footprint editing, path editing, temporal filtering, handle-based deformation mixing, and spacetime morphing.


    1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In SIGGRAPH 2000 Conference Proceedings, 157–164. Google ScholarDigital Library
    2. Alexa, M. 2003. Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2, 105–114.Google ScholarCross Ref
    3. Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics 12, 3, 386–395. Google ScholarDigital Library
    4. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: Coupled prisms for intuitive surface modeling. 11–20.Google Scholar
    5. Davis, T. A. 2005. Umfpack version 4.4 user guide. Tech. Rep. TR-04-003, University of Florida.Google Scholar
    6. Davis, T. A. 2006. User guide for cholmod. Tech. rep., University of Florida.Google Scholar
    7. Der, K., Sumner, R., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Transactions on Graphics 25, 3, 1174–1179. Google ScholarDigital Library
    8. Gleicher, M. 2001. Motion path editing. In Symposium on Interactive 3D Graphics, 195–202. Google ScholarDigital Library
    9. Guskov, I., Sweldens, W., and Schröder, P. 1999. Multiresolution signal processing for meshes. In Proc. SIGGRAPH’99, 325–334. Google ScholarDigital Library
    10. Horn, B. 1987. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 4, 629–642.Google ScholarCross Ref
    11. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Transactions on Graphics 25, 3, 1126–1134. Google ScholarDigital Library
    12. Igarashi, T., Moscovich, T., and Hughes, J. 2005. Asrigid-as-possible shape manipulation. ACM TOG 24, 3, 1134–1141. Google ScholarDigital Library
    13. James, D., and Twigg, C. 2005. Skinning mesh animations. ACM TOG 24, 3, 399–407. Google ScholarDigital Library
    14. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics 24, 3, 561–566. Google ScholarDigital Library
    15. Kircher, S., and Garland, M. 2006. Editing arbitrarily deforming surface animations. ACM Transactions on Graphics 25, 3, 1098–1107. Google ScholarDigital Library
    16. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH’98, 105–114. Google ScholarDigital Library
    17. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics 23, 3, 861–869. Google ScholarDigital Library
    18. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24, 3. Google ScholarDigital Library
    19. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2006. Volume and shape preservation via moving frame manipulation. Technical report.Google Scholar
    20. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM TOG 22, 3, 562–568. Google ScholarDigital Library
    21. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Transactions on Graphics 24, 3. Google ScholarDigital Library
    22. Park, S., and Hodgins, J. 2006. Capturing and animating skin deformation in human motion. ACM Transactions on Graphics 25, 3, 881–889. Google ScholarDigital Library
    23. Sheffer, A., and Kraevoy, V. 2004. Pyramid coordinates for morphing and deformation. In Second International Symposium on 3D Data Processing, Visualization, and Transmission, 68–75. Google ScholarCross Ref
    24. Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 2006. A fast multigrid algorithm for mesh deformation. ACM Transactions on Graphics 25, 3, 1108–1117. Google ScholarDigital Library
    25. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symposium of Geometry Processing. Google ScholarDigital Library
    26. Sumner, R., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3, 397–403. Google ScholarDigital Library
    27. Sumner, R., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Transactions on Graphics 24, 3, 488–495. Google ScholarDigital Library
    28. Wang, J., Drucker, S., Agrawala, M., and Cohen, M. 2006. The cartoon animation filter. ACM Transactions on Graphics 25, 3, 1169–1173. Google ScholarDigital Library
    29. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (special issue for SIGGRAPH 2004) 23, 3, 641–648. Google ScholarDigital Library
    30. Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. 2005. Harmonic guidance for surface deformation. Computer Graphics Forum (Eurographics 2005) 24, 3.Google Scholar
    31. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics 24, 3, 496–503. Google ScholarDigital Library
    32. Zorin, D., Schröder, P., and Sweldens, W. 1997. Interactive mutiresolution mesh editing. In SIGGRAPH 97 Proceedings, 259–268. Google ScholarDigital Library

ACM Digital Library Publication: