“Global illumination with radiance regression functions” by Ren, Wang, Gong, Lin, Tong, et al. …
Conference:
Type(s):
Title:
- Global illumination with radiance regression functions
Session/Category Title: Precomputed Rendering
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We present radiance regression functions for fast rendering of global illumination in scenes with dynamic local light sources. A radiance regression function (RRF) represents a non-linear mapping from local and contextual attributes of surface points, such as position, viewing direction, and lighting condition, to their indirect illumination values. The RRF is obtained from precomputed shading samples through regression analysis, which determines a function that best fits the shading data. For a given scene, the shading samples are precomputed by an offline renderer.The key idea behind our approach is to exploit the nonlinear coherence of the indirect illumination data to make the RRF both compact and fast to evaluate. We model the RRF as a multilayer acyclic feed-forward neural network, which provides a close functional approximation of the indirect illumination and can be efficiently evaluated at run time. To effectively model scenes with spatially variant material properties, we utilize an augmented set of attributes as input to the neural network RRF to reduce the amount of inference that the network needs to perform. To handle scenes with greater geometric complexity, we partition the input space of the RRF model and represent the subspaces with separate, smaller RRFs that can be evaluated more rapidly. As a result, the RRF model scales well to increasingly complex scene geometry and material variation. Because of its compactness and ease of evaluation, the RRF model enables real-time rendering with full global illumination effects, including changing caustics and multiple-bounce high-frequency glossy interreflections.
References:
1. Beale, M. H., Hagan, M. T., and Demuth, H. B. 2012. Neural Network Toolbox user’s guide.Google Scholar
2. Blum, E., and Li, L. 1991. Approximation theory and feedforward networks. Neural Networks 4, 4, 511–515. Google ScholarDigital Library
3. Chester, D. 1990. Why two hidden layers are better than one. In Int. Joint Conf. on Neural Networks (IJCNN), 265–268.Google Scholar
4. Cohen, M. F., Wallace, J., and Hanrahan, P. 1993. Radiosity and realistic image synthesis. Academic Press Professional, Inc., San Diego, CA, USA. Google ScholarDigital Library
5. Crassin, C., Neyret, F., Sainz, M., Green, S., and Eisemann, E. 2011. Interactive indirect illumination using voxel cone tracing. Computer Graphics Forum 30, 7.Google ScholarCross Ref
6. Dachsbacher, C., and Stamminger, M. 2006. Splatting indirect illumination. In I3D, 93–100. Google ScholarDigital Library
7. Dachsbacher, C., Stamminger, M., Drettakis, G., and Durand, F. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM Trans. Graph. 26. Google ScholarDigital Library
8. Dachsbacher, C. 2011. Analyzing visibility configurations. IEEE Trans. Vis. Comput. Graph. 17, 4, 475–486. Google ScholarDigital Library
9. Dong, Z., Kautz, J., Theobalt, C., and Seidel, H.-P. 2007. Interactive global illumination using implicit visibility. In Pacific Conference on Computer Graphics and Applications, 77–86. Google ScholarDigital Library
10. Donikian, M., Walter, B., Bala, K., Fernandez, S., and Greenberg, D. P. 2006. Accurate direct illumination using iterative adaptive sampling. IEEE TVCG 12 (May), 353–364. Google ScholarDigital Library
11. Donnelly, W., and Lauritzen, A. 2006. Variance shadow maps. In I3D, 161–165. Google ScholarDigital Library
12. FAQ. How many hidden layers should I use? Neural Network FAQ, Usenet newsgroup comp.ai.neural-nets, ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hl.Google Scholar
13. Green, P., Kautz, J., Matusik, W., and Durand, F. 2006. View-dependent precomputed light transport using nonlinear gaussian function approximations. In I3D, 7–14. Google ScholarDigital Library
14. Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. Neuroanimator: fast neural network emulation and control of physics-based models. In Proc. SIGGRAPH ’98, 9–20. Google ScholarDigital Library
15. Hagan, M., and Menhaj, M. 1994. Training feedforward networks with the marquardt algorithm. Neural Networks, IEEE Transactions on 5, 6, 989–993. Google ScholarDigital Library
16. Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2 ed. Springer.Google Scholar
17. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 1089–1097. Google ScholarDigital Library
18. Hertzmann, A. 2003. Machine learning for computer graphics: A manifesto and tutorial. In Pacific Conference on Computer Graphics and Applications, 22–36. Google ScholarDigital Library
19. Hinton, G. E. 1989. Connectionist learning procedures. Artificial Intelligence 40, 1–3, 185–234. Google ScholarDigital Library
20. Hornik, K., Stinchcombe, M., and White, H. 1989. Multi-layer feedforward networks are universal approximators. Neural Networks 2, 5 (July), 359–366. Google ScholarDigital Library
21. Jakob, W., 2010. Mitsuba renderer. Department of Computer Science, Cornell University. (http://www.mitsuba-renderer.org).Google Scholar
22. Kaplanyan, A., and Dachsbacher, C. 2010. Cascaded light propagation volumes for real-time indirect illumination. In I3D, 99–107. Google ScholarDigital Library
23. Keller, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56. Google ScholarDigital Library
24. Kontkanen, J., Turquin, E., Holzschuch, N., and Sillion, F. X. 2006. Wavelet radiance transport for interactive indirect lighting. In Rendering Techniques ’06, 161–171. Google ScholarDigital Library
25. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 1208–1215. Google ScholarDigital Library
26. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. Compugraphics ’93, 145–153.Google Scholar
27. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. 27, 37:1–37:9. Google ScholarDigital Library
28. Liu, X., Sloan, P.-P., Shum, H.-Y., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In Rendering Techniques ’04, 337–344. Google ScholarDigital Library
29. McGuire, M., and Luebke, D. 2009. Hardware-accelerated global illumination by image space photon mapping. In High Performance Graphics. Google ScholarDigital Library
30. McKay, M. D., Beckman, R. J., and Conover, W. J. 2000. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 1 (Feb.), 55–61. Google ScholarDigital Library
31. Meyer, M., and Anderson, J. 2007. Key point subspace acceleration and soft caching. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
32. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23, 477–487. Google ScholarDigital Library
33. Nichols, G., and Wyman, C. 2010. Interactive indirect illumination using adaptive multiresolution splatting. IEEE TVCG 16, 5, 729–741. Google ScholarDigital Library
34. Nowrouzezahrai, D., Kalogerakis, E., and Fiume, E. 2009. Shadowing dynamic scenes with arbitrary brdfs. Comput. Graph. Forum: Eurographics Conf. 28, 249–258.Google ScholarCross Ref
35. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29. Google ScholarDigital Library
36. Ramamoorthi, R. 2009. Precomputation-based rendering. Found. Trends. Comput. Graph. Vis. 3 (April), 281–369. Google ScholarDigital Library
37. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27, 129:1–129:8. Google ScholarDigital Library
38. Ritschel, T., Dachsbacher, C., Grosch, T., and Kautz, J. 2012. The state of the art in interactive global illumination. Computer Graphics Forum 31, 1, 160–188. Google ScholarDigital Library
39. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21. Google ScholarDigital Library
40. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3 (July), 382–391. Google ScholarDigital Library
41. Thiedemann, S., Henrich, N., Grosch, T., and Müller, S. 2011. Voxel-based global illumination. In I3D, 103–110. Google ScholarDigital Library
42. Tsai, Y.-T., and Shih, Z.-C. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967–976. Google ScholarDigital Library
43. Wald, I., Mark, W. R., Guenther, J., Boulos, S., Ize, T., Hunt, W., Parker, S. G., and Shirley, P. 2009. State of the art in ray tracing animated scenes. Computer Graphics Forum 28, 6, 1691–1722.Google ScholarCross Ref
44. Wang, R., Tran, J., and Luebke, D. 2006. All-frequency relighting of glossy objects. ACM Trans. Graph. 25, 2, 293–318. Google ScholarDigital Library
45. Wang, R., Zhu, J., and Humphreys, G. 2007. Precomputed radiance transfer for real-time indirect lighting using a spectral mesh basis. In Rendering Techniques ’07, 13–21. Google ScholarDigital Library
46. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28 (July), 91:1–91:8. Google ScholarDigital Library
47. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Proc. SIGGRAPH ’92, 265–272. Google ScholarDigital Library