“Generating and exploring good building layouts” by Bao, Yan, Mitra and Wonka

  • ©Fan Bao, Dongming Yan, Niloy J. Mitra, and Peter Wonka




    Generating and exploring good building layouts

Session/Category Title: Structures, Faces & Building




    Good building layouts are required to conform to regulatory guidelines, while meeting certain quality measures. While different methods can sample the space of such good layouts, there exists little support for a user to understand and systematically explore the samples. Starting from a discrete set of good layouts, we analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. We represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts. We use our framework on a variety of different test scenarios to showcase an intuitive design, navigation, and exploration interface.


    1. Aliaga, D. G., Rosen, P. A., and Bekins, D. R. 2007. Style grammars for interactive visualization of architecture. IEEE TVCG 13, 4, 786–797. Google ScholarDigital Library
    2. Beneš, B., Št’ava, O., Měch, R., and Miller, G. 2011. Guided procedural modeling. CGF (Eurographics) 30, 2, 325–334.Google ScholarCross Ref
    3. Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM TOG (SIGGRAPH) 29, 4, 104:1–104:10. Google ScholarDigital Library
    4. Borg, I., and Groenen, P. J. 2005. Modern Multidimensional Scaling Theory and Applications.Google Scholar
    5. Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. 2009. Structure-preserving reshape for textured architectural scenes. CGF (Eurographics) 28, 2, 469–480.Google ScholarCross Ref
    6. Coleman, K., 2007. Building optimization: An integrated approach to the design of tall buildings. master thesis, MIT.Google Scholar
    7. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. 1994. The farthest point strategy for progressive image sampling. In Pattern Recognition, vol. 3, 93–97.Google Scholar
    8. Gagne, J., and Andersen, M. 2010. Multi-objective façade optimization for daylighting design using a genetic algorithm. In SimBuild 2010.Google Scholar
    9. Habbecke, M., and Kobbelt, L. 2012. Linear analysis of nonlinear constraints for interactive geometric modeling. CGF (Eurographics) 31, 2, 641–650. Google ScholarDigital Library
    10. Hale, E. T., and Long, N. L. 2010. Enumerating a diverse set of building designs using discrete optimization. In SimBuild 2010.Google Scholar
    11. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM TOG (SIGGRAPH) 26, 3, 64:1–64:8. Google ScholarDigital Library
    12. Leblanc, L., Houle, J., and Poulin, P. 2011. Component-based modeling of complete buildings. In Graphics Interface 2011, 87–94. Google ScholarDigital Library
    13. Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving retargeting of irregular 3D architecture. ACM TOG (SIGGRAPH Asia) 30, 6, 183:1–183:10. Google ScholarDigital Library
    14. Lipp, M., Wonka, P., and Wimmer, M. 2008. Interactive visual editing of grammars for procedural architecture. ACM TOG (SIGGRAPH) 27, 3, 102:1–102:10. Google ScholarDigital Library
    15. Liu, H., Yang, Y.-L., AlHalawani, S., and Mitra, N. J. 2013. Constraint-aware interior layout exploration for precast concrete-based buildings. The Visual Computer.Google Scholar
    16. Marks, J., Andalman, B., Beardsley, P., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S. 1997. Design galleries: a general approach to setting params. for computer graphics and animation. In Proc. SIGGRAPH, 389–400. Google ScholarDigital Library
    17. Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated residential building layouts. ACM TOG (SIGGRAPH Asia) 29, 6, 181:1–181:12. Google ScholarDigital Library
    18. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM TOG (SIGGRAPH) 30, 4, 87:1–87:9. Google ScholarDigital Library
    19. Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. 2006. Procedural modeling of buildings. ACM TOG (SIGGRAPH) 25, 3, 614–623. Google ScholarDigital Library
    20. Müller, P., Zeng, G., Wonka, P., and Gool, L. V. 2007. Image-based procedural modeling of facades. ACM TOG (SIGGRAPH) 26, 3, 85:1–85:9. Google ScholarDigital Library
    21. Měch, R., and Prusinkiewicz, P. 1996. Visual models of plants interacting with their environment. In Proc. SIGGRAPH, 397–410. Google ScholarDigital Library
    22. Parish, Y. I. H., and Müller, P. 2001. Procedural modeling of cities. In Proc. SIGGRAPH, 301–308. Google ScholarDigital Library
    23. Prusinkiewicz, P., Mündermann, L., Karwowski, R., and Lane, B. 2001. The use of positional information in the modeling of plants. In Proc. SIGGRAPH, 289–300. Google ScholarDigital Library
    24. Rafiq, M. Y., Mathews, J. D., and Bullock, G. N. 2003. Conceptual building design — an evolutionary approach. ASCE Journal of Computing in Civil Engineering 17, 3, 150–158.Google ScholarCross Ref
    25. Shapira, L., Shamir, A., and Cohen-Or, D. 2009. Image appearance exploration by model-based navigation. CGF (Eurographics) 28, 2, 629–638.Google ScholarCross Ref
    26. Št’ava, O., Beneš, B., Měch, R., Aliaga, D. G., and Krištof, P. 2010. Inverse procedural modeling by automatic generation of L-systems. CGF (Eurographics) 29, 2, 665–674.Google ScholarCross Ref
    27. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM TOG (SIGGRAPH Asia) 28, 5, 167:1–167:10. Google ScholarDigital Library
    28. Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM TOG 30, 2, 11:1–11:14. Google ScholarDigital Library
    29. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM TOG (SIGGRAPH) 31, 4, 86:1–86:11. Google ScholarDigital Library
    30. Vanegas, C. A., Garcia-Dorado, I., Aliaga, D., Benes, B., and Waddell, P. 2012. Inverse design of urban procedural models. ACM TOG (SIGGRAPH Asia) 31, 6, 168:1–168:12. Google ScholarDigital Library
    31. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM TOG (SIGGRAPH Asia) 28, 5, 112:1–112:9. Google ScholarDigital Library
    32. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM TOG (SIGGRAPH Asia) 31, 6, 159:1–159:11. Google ScholarDigital Library
    33. Wonka, P., Wimmer, M., Sillion, F. X., and Ribarsky, W. 2003. Instant architecture. ACM TOG (SIGGRAPH) 22, 3, 669–677. Google ScholarDigital Library
    34. Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM TOG (SIGGRAPH Asia) 30, 6, 124:1–124:12. Google ScholarDigital Library
    35. Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. 2012. Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM TOG (SIGGRAPH) 31, 4, 56:1–56:11. Google ScholarDigital Library
    36. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. 2011. Make it home: Automatic optimization of furniture arrangement. ACM TOG (SIGGRAPH) 30, 4, 86:1–86:11. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: