“Generalizing locomotion style to new animals with inverse optimal regression” by Wampler, Popovic and Popović

  • ©Kevin Wampler, Zoran Popovic, and Jovan Popović




    Generalizing locomotion style to new animals with inverse optimal regression

Session/Category Title: Controlling Character




    We present a technique for analyzing a set of animal gaits to predict the gait of a new animal from its shape alone. This method works on a wide range of bipeds and quadrupeds, and adapts the motion style to the size and shape of the animal. We achieve this by combining inverse optimization with sparse data interpolation. Starting with a set of reference walking gaits extracted from sagittal plane video footage, we first use inverse optimization to learn physically motivated parameters describing the style of each of these gaits. Given a new animal, we estimate the parameters describing its gait with sparse data interpolation, then solve a forward optimization problem to synthesize the final gait. To improve the realism of the results, we introduce a novel algorithm called joint inverse optimization which learns coherent patterns in motion style from a database of example animal-gait pairs. We quantify the predictive performance of our model by comparing its synthesized gaits to ground truth walking motions for a range of different animals. We also apply our method to the prediction of gaits for dinosaurs and other extinct creatures.


    1. Alexander, R. 1996. Optima for Animals. Princeton paper-backs. Princeton University Press.Google Scholar
    2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Transactions on Graphics (ACM SIGGRAPH 2002) 21, 3, 483–490. Google ScholarDigital Library
    3. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. 2008. Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 3 (June), 346–359. Google ScholarDigital Library
    4. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press, New York, NY, USA. Google ScholarDigital Library
    5. Bruderlin, A., and Williams, L. 1995. Motion signal processing. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, 97–104. Google ScholarDigital Library
    6. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Transctions on Graphics 29, 4, Article 130. Google ScholarDigital Library
    7. Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. 2011. Locomotion skills for simulated quadrupeds. ACM Transactions on Graphics 30, 4, Article TBD. Google ScholarDigital Library
    8. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-Based Locomotion Controllers. ACM Transactions on Graphics 29, 3. Google ScholarDigital Library
    9. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 3, 417–426. Google ScholarDigital Library
    10. Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics 32, 6. Google ScholarDigital Library
    11. Gill, P. E., Murray, W., and Saunders, M. A. 2005. Snopt: An sqp algorithm for large-scale constrained optimization. SIAM Review 47, 1, 99–131. Google ScholarDigital Library
    12. Hansen, N., Hansen, N., Ostermeier, A., and Ostermeier, A. 1996. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. Morgan Kaufmann, 312–317.Google Scholar
    13. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. Graph. 27, 3, 1–11. Google ScholarDigital Library
    14. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’97, 153–162. Google ScholarDigital Library
    15. Jain, S., and Liu, C. K. 2011. Controlling physics-based characters using soft contacts. ACM Trans. Graph. (SIGGRAPH Asia) 30 (Dec.), 163:1–163:10. Google ScholarDigital Library
    16. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics 21, 3 (July), 473–482. Google ScholarDigital Library
    17. Kry, P. G., Reveret, L., Faure, F., and Cani, M.-P. 2009. Modal locomotion: Animating virtual characters with natural vibrations. Computer Graphics Forum.Google Scholar
    18. Lee, S. J., and Popović, Z. 2010. Learning behavior styles with inverse reinforcement learning. ACM Trans. Graph. 29, 4, 1–7. Google ScholarDigital Library
    19. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21, 3 (July), 491–500. Google ScholarDigital Library
    20. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24, 3, 1071–1081. Google ScholarDigital Library
    21. MacIver, M. A., Patankar, N. A., and Shirgaonkar, A. A. 2010. Energy-information trade-offs between movement and sensing. PLoS computational biology 6, 5, e1000769.Google Scholar
    22. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1–43:8. Google ScholarDigital Library
    23. Mordatch, I., Wang, J. M., Todorov, E., and Koltun, V. 2013. Animating human lower limbs using contact-invariant optimization. ACM Trans. Graph. 32, 6 (Nov.), 203:1–203:8. Google ScholarDigital Library
    24. Nunes, R. F., Cavalcante-Neto, J. B., Vidal, C. A., Kry, P. G., and Zordan, V. B. 2012. Using natural vibrations to guide control for locomotion. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’12, 87–94. Google ScholarDigital Library
    25. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. SIGGRAPH Comput. Graph. 25 (July), 349–358. Google ScholarDigital Library
    26. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514–521. Google ScholarDigital Library
    27. Sims, K. 1994. Evolving virtual creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’94, 15–22. Google ScholarDigital Library
    28. Tan, J., Gu, Y., Turk, G., and Liu, C. K. 2011. Articulated swimming creatures. ACM Trans. Graph. 30, 4 (July), 58:1–58:12. Google ScholarDigital Library
    29. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3, 1–8. Google ScholarDigital Library
    30. Wampler, K. 2012. Computational Generation of Terrestrial Animal Locomotion. PhD thesis, Seattle, WA, USA. AAI3552870. Google ScholarDigital Library
    31. Wang, J. M., Hamner, S. R., Delp, S. L., and Koltun, V. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31, 4, 25. Google ScholarDigital Library
    32. Wei, X., Min, J., and Chai, J. 2011. Physically valid statistical models for human motion generation. ACM Trans. Graph. 30 (May), 19:1–19:10. Google ScholarDigital Library
    33. Witkin, A. P., and Popović, Z. 1995. Motion warping. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, 105–108. Google ScholarDigital Library
    34. Wu, J.-c., and Popović, Z. 2003. Realistic modeling of bird flight animations. ACM Trans. Graph. 22, 3 (July), 888–895. Google ScholarDigital Library
    35. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26, 3, Article 105. Google ScholarDigital Library
    36. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: High-resolution capture for modeling and animation. In ACM Annual Conference on Computer Graphics, 548–558. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: