“Functional Characterization of Intrinsic and Extrinsic Geometry” by Corman, Solomon, Ben-Chen, Guibas and Ovsjanikov

  • ©Étienne Corman, Justin M. Solomon, Mirela (Miri) Ben-Chen, Leonidas (Leo) J. Guibas, and Maks Ovsjanikov

Conference:


Type(s):


Title:

    Functional Characterization of Intrinsic and Extrinsic Geometry

Session/Category Title:   Being Discrete About Geometry Processing


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose a novel way to capture and characterize distortion between pairs of shapes by extending the recently proposed framework of shape differences built on functional maps. We modify the original definition of shape differences slightly and prove that after this change, the discrete metric is fully encoded in two shape difference operators and can be recovered by solving two linear systems of equations. Then we introduce an extension of the shape difference operators using offset surfaces to capture extrinsic or embedding-dependent distortion, complementing the purely intrinsic nature of the original shape differences. Finally, we demonstrate that a set of four operators is complete, capturing intrinsic and extrinsic structure and fully encoding a shape up to rigid motion in both discrete and continuous settings. We highlight the usefulness of our constructions by showing the complementary nature of our extrinsic shape differences in capturing distortion ignored by previous approaches. We additionally provide examples where we recover local shape structure from the shape difference operators, suggesting shape editing and analysis tools based on manipulating shape differences.

References:


    1. Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proceedings of the 2011 ICCV Workshops (ICCV’11). 1626–1633. Google ScholarCross Ref
    2. Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. 2009. Spatial deformation transfer. In Proceedings of the 2009 SCA Conference (SCA’09). 67–74. Google ScholarDigital Library
    3. O. Bonnet. 1867. Mémoire sur la theorie des surfaces applicables sur une surface donnée. Journal de l’École Polytechnique 25, 313–151.Google Scholar
    4. Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein. 2015. Shape-from-operator: Recovering shapes from intrinsic operators. Computer Graphics Forum 34, 2, 265–274. Google ScholarDigital Library
    5. M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. 2010. Polygon Mesh Processing. AK Peters. Google ScholarCross Ref
    6. S.P. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press. Google ScholarCross Ref
    7. Susanne Brenner and Ridgway Scott. 2007. The Mathematical Theory of Finite Element Methods. Vol. 15. Springer.Google Scholar
    8. Haim Brezis. 2010. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer. Google ScholarCross Ref
    9. Manfredo P. Do Carmo. 1976. Differential Geometry of Curves and Surfaces. Pearson.Google Scholar
    10. David Cohen-Steiner and Jean-Marie Morvan. 2003. Restricted Delaunay triangulations and normal cycle. In Proceedings of the 2003 SoCG Conference (SoCG’03). 312–321. Google ScholarDigital Library
    11. Etienne Corman, Maks Ovsjanikov, and Antonin Chambolle. 2014. Supervised descriptor learning for non-rigid shape matching. In Computer Vision—ECCV 2014 Workshops. Lecture Notes in Computer Science, Vol. 8928. Springer, 283–298.Google Scholar
    12. Etienne Corman, Maks Ovsjanikov, and Antonin Chambolle. 2015. Continuous matching via vector field flow. Computer Graphics Forum 34, 5, 129–139.Google ScholarCross Ref
    13. Fernando de Goes, Pooran Memari, Patrick Mullen, and Mathieu Desbrun. 2014. Weighted triangulations for geometry processing. ACM Transactions on Graphics 33, 3, 28:1–28:13.Google Scholar
    14. Nadav Dym and Yaron Lipman. 2016. Exact recovery with symmetries for Procrustes matching. arXiv:1606.01548.Google Scholar
    15. Michael Eigensatz, Robert W. Sumner, and Mark Pauly. 2008. Curvature-domain shape processing. Computer Graphics Forum 27, 2, 241–250. Google ScholarCross Ref
    16. Stefan Fröhlich and Mario Botsch. 2011. Example-driven deformations based on discrete shells. Computer Graphics Forum 30, 8, 2246–2257. Google ScholarCross Ref
    17. Herman Gluck. 1975. Almost all simply connected closed surfaces are rigid. In Geometric Topology. Lecture Notes in Mathematics, Vol. 438. Springer, 225–239. Google ScholarCross Ref
    18. Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. Retrieved January 19, 2017, from http://cvxr.com/cvx.Google Scholar
    19. T. Hoffmann, A. O. Sageman-Furnas, and M. Wardetzky. 2014. A discrete parametrized surface theory in R3. arXiv:1412.7293.Google Scholar
    20. Qi-Xing Huang and Leonidas Guibas. 2013. Consistent shape maps via semidefinite programming. Computer Graphics Forum 32, 5, 177–186. Google ScholarDigital Library
    21. Wonhyung Jung, Hayong Shin, and Byoung K. Choi. 2004. Self-intersection removal in triangular mesh offsetting. Computer-Aided Design and Applications 1, 1–4, 477–484. Google ScholarCross Ref
    22. Artiom Kovnatsky, Michael M. Bronstein, Xavier Bresson, and Pierre Vandergheynst. 2015. Functional correspondence by matrix completion. In Proceedings of the 2015 CVPR Conference (CVPR’15). Google ScholarCross Ref
    23. Artiom Kovnatsky, Michael M. Bronstein, Alex M. Bronstein, Klaus Glashoff, and Ron Kimmel. 2013. Coupled quasi-harmonic bases. Computer Graphics Forum 32, 2.4, 439–448.Google ScholarCross Ref
    24. E. Kreyszig. 1959. Differential Geometry. Dover.Google Scholar
    25. Jan De Leeuw. 1977. Applications of convex analysis to multidimensional scaling. In Recent Developments in Statistics, J. R. Barra, F. Brodeau, G. Romier, and B. Van Cutsem (Eds.). North Holland Publishing, Amsterdam, Netherlands, 133–146.Google Scholar
    26. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, H.-C. Hege and K. Polthier (Eds.). Springer-Verlag, Heidelberg, Germany, 35–57.Google Scholar
    27. MOSEK ApS. 2015. The MOSEK Optimization Toolbox for MATLAB Manual. Version 7.1 (Revision 62). Retrieved January 19, 2017, from http://docs.mosek.com/7.1/toolbox/index.html.Google Scholar
    28. Andrej Muhic and Bor Plestenjak. 2009. On the singular two-parameter eigenvalue problem. Electronic Journal of Linear Algebra 18, 42. Google ScholarCross Ref
    29. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-order shape optimization using offset surfaces. ACM Transactions on Graphics 34, 4, 102:1–102:9.Google ScholarDigital Library
    30. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics 31, 4, 30:1–30:11.Google ScholarDigital Library
    31. Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Transactions on Graphics 33, 4, 134:1–134:11.Google ScholarDigital Library
    32. N. M. Patrikalakis and T. Maekawa. 2009. Shape Interrogation for Computer Aided Design and Manufacturing. Springer.Google Scholar
    33. Jonathan Pokrass, Alexander M. Bronstein, Michael M. Bronstein, Pablo Sprechmann, and Guillermo Sapiro. 2013. Sparse modeling of intrinsic correspondences. Computer Graphics Forum 32, 459–468. Google ScholarCross Ref
    34. S. Rosenberg. 1997. Laplacian on a Riemannian Manifold. Cambridge University Press. Google ScholarCross Ref
    35. Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics 32, 4, 72:1–72:12.Google ScholarDigital Library
    36. Francisco-Javier Sayas. 2008. A Gentle Introduction to the Finite Element Method. Retrieved January 19, 2017, from http://www.math.udel.edu/∼fjsayas/documents/anIntro2FEM+2015.pdf.Google Scholar
    37. Gilbert Strang and George J. Fix. 2008. An Analysis of the Finite Element Method (2n ed.). Vol. 212. Wellesley Cambridge.Google Scholar
    38. Y. Wang, B. Liu, and Y. Tong. 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. Computer Graphics Forum 31, 8, 2277–2287. Google ScholarDigital Library
    39. Wei Zeng, Ren Guo, Feng Luo, and Xianfeng Gu. 2012. Discrete heat kernel determines discrete Riemannian metric. Graphical Models 74, 4, 121–129. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: