“Folding and crumpling adaptive sheets” by Narain, Pfaff and O’Brien
Conference:
Type(s):
Title:
- Folding and crumpling adaptive sheets
Session/Category Title: Rods & Shells
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We present a technique for simulating plastic deformation in sheets of thin materials, such as crumpled paper, dented metal, and wrinkled cloth. Our simulation uses a framework of adaptive mesh refinement to dynamically align mesh edges with folds and creases. This framework allows efficient modeling of sharp features and avoids bend locking that would be otherwise caused by stiff in-plane behavior. By using an explicit plastic embedding space we prevent remeshing from causing shape diffusion. We include several examples demonstrating that the resulting method realistically simulates the behavior of thin sheets as they fold and crumple.
References:
1. Ainsley, S., Vouga, E., Grinspun, E., and Tamstorf, R. 2012. Speculative parallel asynchronous contact mechanics. ACM Trans. Graph. 31, 6 (Nov.), 151:1–151:8. Google ScholarDigital Library
2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. Proc. SIGGRAPH ’98, 43–54. Google ScholarDigital Library
3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
4. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594–603. Google ScholarDigital Library
5. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, 28–36. Google ScholarDigital Library
6. Brochu, T., Edwards, E., and Bridson, R. 2012. Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31, 4 (July), 96:1–96:7. Google ScholarDigital Library
7. Burgoon, R., Grinspun, E., and Wood, Z. 2006. Discrete shells origami. In Proc. Computers And Their Applications, 180–187.Google Scholar
8. Busaryev, O., Dey, T. K., and Wang, H. 2013. Adaptive fracture simulation of multi-layered thin plates. ACM Trans. Graph. (to appear). Google ScholarDigital Library
9. Cambou, A. D., and Menon, N. 2011. Three-dimensional structure of a sheet crumpled into a ball. Proc. National Academy of Sciences of the United States of America 108, 36 (Sept.), 14741–5.Google ScholarCross Ref
10. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007, 219–228. Google ScholarDigital Library
11. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3 (July), 604–611. Google ScholarDigital Library
12. English, E., and Bridson, R. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27, 3 (Aug.), 66:1–66:5. Google ScholarDigital Library
13. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., Courant Institute of Mathematical Sciences, New York University, Aug.Google Scholar
14. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
15. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: a simple framework for adaptive simulation. ACM Trans. Graph. 21, 3 (July), 281–290. Google ScholarDigital Library
16. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, 62–67. Google ScholarDigital Library
17. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (Aug.), 23:1–23:4. Google ScholarDigital Library
18. Hutchinson, D., Preston, M., and Hewitt, T. 1996. Adaptive refinement for mass/spring simulations. In 7th Eurographics Workshop on Animation and Simulation, Springer-Verlag, 31–45. Google ScholarDigital Library
19. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, 131–140. Google ScholarDigital Library
20. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM Trans. Graph. 27, 3 (Aug.), 75:1–75:9. Google ScholarDigital Library
21. Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (July), 820–825. Google ScholarDigital Library
22. Li, L., and Volkov, V. 2005. Cloth animation with adaptively refined meshes. In Proc. 28th Australasian Computer Science Conference, vol. 38. Google ScholarDigital Library
23. Lobkovsky, A. E., and Witten, T. A. 1997. Properties of ridges in elastic membranes. Phys. Rev. E 55 (Feb), 1577–1589.Google ScholarCross Ref
24. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6 (Nov.), 152:1–152:10. Google ScholarDigital Library
25. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3 (July), 291–294. Google ScholarDigital Library
26. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Proc. Graphics Interface 95, 147–154.Google Scholar
27. Rohmer, D., Cani, M.-P., Hahmann, S., and Thibert, B. 2011. Folded Paper Geometry from 2D Pattern and 3D Contour. In Eurographics 2011 – Short Papers, 21–24.Google Scholar
28. Simnett, T. J. R., Laycock, S. D., and Day, A. M. 2009. An Edge-based Approach to Adaptively Refining a Mesh for Cloth Deformation. In Eurographics UK Theory and Practice of Computer Graphics, 77–84.Google Scholar
29. Solomon, J., Vouga, E., Wardetzky, M., and Grinspun, E. 2012. Flexible developable surfaces. Computer Graphics Forum 31, 5 (Aug.), 1567–1576. Google ScholarDigital Library
30. Spillmann, J., and Teschner, M. 2008. An adaptive contact model for the robust simulation of knots. Computer Graphics Forum 27, 2, 497–506.Google ScholarCross Ref
31. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In Proc. SIGGRAPH ’88, 269–278. Google ScholarDigital Library
32. Thomaszewski, B., Pabst, S., and Straer, W. 2009. Continuum-based strain limiting. Computer Graphics Forum 28, 2, 569–576.Google ScholarCross Ref
33. Villard, J., and Borouchaki, H. 2002. Adaptive meshing for cloth animation. In Proc. 11th International Meshing Roundtable, Springer-Verlag, 243–252.Google Scholar
34. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29, 6 (Dec.), 156:1–156:10. Google ScholarDigital Library
35. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4 (July), 71:1–71:12. Google ScholarDigital Library
36. Weisstein, E. W. 2013. Apollonius’ problem. In MathWorld—A Wolfram Web Resource. Apr. http://mathworld.wolfram.com/ApolloniusProblem.html.Google Scholar
37. Welzl, E. 1991. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science, H. Maurer, Ed., vol. 555 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 359–370.Google Scholar
38. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1–49:11. Google ScholarDigital Library
39. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1–47:8. Google ScholarDigital Library