“Fluxed animated boundary method” by Stomakhin and Selle

  • ©Alexey Stomakhin and Andrew Selle




    Fluxed animated boundary method

Session/Category Title: Fluid Control & Synthesis




    We present a novel approach to guiding physically based particle simulations using boundary conditions. Unlike commonly used ad hoc particle techniques for adding and removing the material from a simulation, our approach is principled by utilizing the concept of volumetric flux. Artists are provided with a simple yet powerful primitive called a fluxed animated boundary (FAB), allowing them to specify a control shape and a material flow field. The system takes care of enforcing the corresponding boundary conditions and necessary particle reseeding. We show how FABs can be used artistically or physically. Finally, we demonstrate production examples that show the efficacy of our method.


    1. Morten Bojsen-Hansen and Chris Wojtan. 2016. Generalized non-reflecting boundaries for fluid re-simulation. ACM Trans. on Graph. 35, 4 (2016), 96. Google ScholarDigital Library
    2. R. Bridson. 2008. Fluid Simulation for Computer Graphics. Taylor & Francis. https://books.google.com/books?id=gFI8y87VCZ8CGoogle Scholar
    3. M.W. Dingemans. 1997. Water Wave Propagation Over Uneven Bottoms: Non-linear wave propagation. Number pt. 2 in Advanced series on ocean engineering. World Scientific Pub. https://books.google.com/books?id=FLTfoAut5dwCGoogle Scholar
    4. Raanan Fattal and Dani Lischinski. 2004. Target-driven Smoke Animation. ACM Trans. Graph. 23, 3 (Aug. 2004), 441–448. Google ScholarDigital Library
    5. Nick Foster and Dimitris Metaxas. 1997. Controlling Fluid Animation. In Proc. 1997 Conf. on Comp. Graphics Intl. (CGI ’97). http://dl.acm.org/citation.cfm?id=792756.792862Google ScholarDigital Library
    6. Alain Fournier and William T. Reeves. 1986. A Simple Model of Ocean Waves. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 75–84. Google ScholarDigital Library
    7. Jeong-mo Hong and Chang-hun Kim. 2004. Controlling fluid animation with geometric potential. Comp. Anim. and Virtual Worlds 15, 3–4 (2004), 147–157. Google ScholarCross Ref
    8. Christopher Horvath and Willi Geiger. 2009. Directable, High-resolution Simulation of Fire on the GPU. ACM Trans. Graph. 28, 3, Article 41 (July 2009), 8 pages. Google ScholarDigital Library
    9. Christopher J. Horvath. 2015. Empirical Directional Wave Spectra for Computer Graphics. In Proc. 2015 Symp. on Digital Production (DigiPro ’15). 29–39. Google ScholarDigital Library
    10. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-cell Method. ACM Trans. Graph. 34, 4, Article 51 (July 2015), 10 pages. Google ScholarDigital Library
    11. Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence for fluid simulation. In ACM Trans. on Graph., Vol. 27. ACM, 50. Google ScholarDigital Library
    12. Antoine McNamara, Adrien Treuille, Zoran Popovic, and Jos Stam. 2004. Fluid control using the adjoint method. ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004 (2004), 449–456. Google ScholarDigital Library
    13. J.H. Michell. 1893. The Highest Waves in Water. https://books.google.com/books?id=MCgzAQAAMAAJGoogle Scholar
    14. Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. 2004. Animation and Control of Breaking Waves. In Proc. 2004 ACM SIGGRAPH/EG Symp. on Comp. Anim. (SCA ’04). 315–324. Google ScholarDigital Library
    15. Ken Museth. 2013. VDB: High-resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. Google ScholarDigital Library
    16. Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High Resolution Naturalistic Liquid Simulation. ACM Trans. Graph. 30, 4, Article 83 (July 2011), 8 pages. Google ScholarDigital Library
    17. Michael B. Nielsen and Robert Bridson. 2016. Spatially Adaptive FLIP Fluid Simulations in Bifrost. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM, New York, NY, USA, Article 41, 2 pages. Google ScholarDigital Library
    18. Michael O’Brien. 2013. Running Rivers. XRDS 19, 4 (June 2013), 30–33. Google ScholarDigital Library
    19. N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable Photorealistic Liquids. In Proc. 2004 ACM SIGGRAPH/EG Symp. on Comp. Anim. 193–202. Google ScholarDigital Library
    20. William T Reeves. 1983. Particle systems-a technique for modeling a class of fuzzy objects. ACM Trans. on Graphics 2, 2 (1983), 91–108. Google ScholarDigital Library
    21. I. Sachs, C. Twigg, L. Uren, D. Pearson, and N. Rasmussen. 2010. Waterbending: Water effects on “The Last Airbender”. In ACM SIGGRAPH 2010 Talks.Google Scholar
    22. Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A mass spring model for hair simulation. ACM Trans. on Graph. 27, 3 (2008), 64. Google ScholarDigital Library
    23. Lin Shi and Yizhou Yu. 2005a. Controllable Smoke Animation with Guiding Objects. ACM Trans. Graph. 24, 1 (Jan. 2005), 140–164. Google ScholarDigital Library
    24. Lin Shi and Yizhou Yu. 2005b. Taming Liquids for Rapidly Changing Targets. In Proc. 2005 ACM SIGGRAPH/Eurographics Symp. on Comp. Anim. ACM, 229–236. Google ScholarDigital Library
    25. Andreas Söderström, Matts Karlsson, and Ken Museth. 2010. A PML-based nonreflective boundary for free surface fluid animation. ACM Trans. on Graph. 29, 5 (2010), 136. Google ScholarDigital Library
    26. G.G. Stokes. 1847. On the theory of oscillatory waves. Trans. of the Cambridge Philosophical Society (1847).Google Scholar
    27. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4, Article 102 (July 2013), 10 pages. Google ScholarDigital Library
    28. Jerry Tessendorf. 1999. Simulating ocean water.Google Scholar
    29. N. Thürey, R. Keiser, M. Pauly, and U. Rüde. 2006. Detail-preserving Fluid Control. In Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comp. Anim. 7–12. http://dl.acm.org/citation.cfm?id=1218064.1218066Google Scholar
    30. Nils Thürey, Ulrich Rüde, and Marc Stamminger. 2006. Animation of open water phenomena with coupled shallow water and free surface simulations. In Proc. 2006 ACM SIGGRAPH/EG symp. on Comp. Anim. Eurographics Association, 157–164.Google Scholar
    31. Adrien Treuille, Antoine McNamara, Zoran Popovic, and Jos Stam. 2003. Keyframe control of smoke simulations. ACM Trans. on Graphics 22 (7 2003), 716–723. Google ScholarDigital Library
    32. Stephan Trojansky 2008. Raging Waters: The Rivergod of Narnia. In ACM SIGGRAPH 2008 Talks (SIGGRAPH ’08). Article 74, 1 pages. Google ScholarDigital Library
    33. Mark Wiebe and Ben Houston. 2004. The Tar Monster: Creating a Character with Fluid Simulation. In ACM SIGGRAPH 2004 Sketches (SIGGRAPH ’04). 64-. Google ScholarDigital Library
    34. I.R. Young. 1999. Wind Generated Ocean Waves. Elsevier Science. https://books.google.com/books?id=ph7GKZZGjyYCGoogle Scholar
    35. Jihun Yu and Greg Turk. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’10). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 217–225. http://dl.acm.org/citation.cfm?id=1921427.1921459Google ScholarDigital Library
    36. Zhi Yuan, Fan Chen, and Ye Zhao. 2011. Pattern-guided Smoke Animation with Lagrangian Coherent Structure. ACM Trans. Graph. 30, 6, Article 136 (Dec. 2011), 8 pages. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: