“Fluid Simulation Using Laplacian Eigenfunctions” by De Witt, Lessig and Fiume

  • ©Tyler De Witt, Christian Lessig, and Eugene Fiume

Conference:


Type(s):


Title:

    Fluid Simulation Using Laplacian Eigenfunctions

Presenter(s)/Author(s):



Abstract:


    We present an algorithm for the simulation of incompressible fluid phenomena that is computationally efficient and leads to visually convincing simulations with far fewer degrees of freedom than existing approaches. Rather than using an Eulerian grid or Lagrangian elements, we represent vorticity and velocity using a basis of global functions defined over the entire simulation domain. We show that choosing Laplacian eigenfunctions for this basis provides benefits, including correspondence with spatial scales of vorticity and precise energy control at each scale. We perform Galerkin projection of the Navier-Stokes equations to derive a time evolution equation in the space of basis coefficients. Our method admits closed-form solutions on simple domains but can also be implemented efficiently on arbitrary meshes.

References:


    1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In ACM SIGGRAPH 2007 Papers. ACM, New York.
    2. Agrachev, A. A. and Sarychev, A. V. 2005. Navier-Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mechan. 7, 1, 108–152.
    3. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’06). Eurographics Association, 25–32.
    4. Arnold, V. I. 1966. Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16.
    5. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In ACM SIGGRAPH 2009 Papers. ACM, New York, 53:1–53:9.
    6. Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-Noise for procedural fluid flow. In ACM SIGGRAPH 2007 Papers. ACM, New York.
    7. Cheng, D. K. 1999. Field and Wave Electromagnetics. Addison-Wesley, Reading, MA.
    8. de Witt, T. 2010. Fluid simulation in bases of Laplacian eigenfunctions. M.S. thesis, University of Toronto, Toronto, ON, Canada.
    9. Desbrun, M. and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation’96. Springer, 61–76.
    10. Desbrun, M., Kanso, E., and Tong, Y. 2005. Discrete differential forms for computational modeling. In ACM SIGGRAPH 2005 Courses. ACM, New York.
    11. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26.
    12. Fattal, R. and Lischinski, D. 2004. Target-driven smoke animation. In ACM SIGGRAPH 2004 Papers. ACM, New York, 441–448.
    13. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 15–22.
    14. Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 471–483.
    15. Gamito, M. N., Lopes, P. F., and Gomes, M. R. 1995. Two-Dimensional simulation of gaseous phenomena using vortex particles. In Proceedings of the 6th Eurographics Workshop on Computer Animation and Simulation. Springer, 3–15.
    16. Gupta, M. and Narasimhan, S. G. 2007. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’07). Eurographics Association, 17–25.
    17. Gustafson, K. and Hartman, R. 1983. Divergence-Free bases for finite element schemes in hydrodynamics. SIAM J. Numer. Anal. 20, 697–721.
    18. Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. In ACM SIGGRAPH 2010 Papers. ACM, New York, 114:1–114:9.
    19. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers. ACM, New York, 457–462.
    20. Marsden, J. E. and Ratiu, T. S. 1999. Introduction to Mechanics and Symmetry, 2nd ed. Texts in Applied Mathematics. No. 17, Springer, New York.
    21. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. In ACM SIGGRAPH 2004 Papers. ACM, New York, 449–456.
    22. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-Preserving integrators for fluid animation. In ACM SIGGRAPH 2009 Papers. ACM, New York, 38:1–38:8.
    23. Müller, M., Charypar, D., and Gross, M. 2003. Particle-Based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’03). Eurographics Association, 154–159.
    24. Orszag, S. A. 1969. Numerical methods for the simulation of turbulence. Phys. Fluids 12, 250–257.
    25. Orszag, S. A. and Patterson, G. 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79.
    26. Park, S. I. and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’05). ACM, New York, 261–270.
    27. Poincaré, H. 1901. Sur une forme nouvelle des équations de la méchanique. C.R. Acad. Sci. 132, 369–371.
    28. Rogallo, R., Moin, P., and Reynolds, W. 1981. Numerical experiments in homogeneous turbulence. NASA TM-81315.
    29. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. Sci. Comput. 35, 350–371.
    30. Silberman, I. 1954. Planetary waves in the atmosphere. J. Meteor. 11, 27–34.
    31. Stam, J. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York, 121–128.
    32. Stam, J. 2002. A simple fluid solver based on the FFT. J. Graph. Tools 6, 43–52.
    33. Stam, J. and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 369–376.
    34. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In ACM SIGGRAPH 2006 Papers. ACM, New York, 826–834.
    35. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. In ACM SIGGRAPH 2003 Papers. ACM, New York, 716–723.
    36. Twigg, C. D. and James, D. L. 2008. Backward steps in rigid body simulation. In ACM SIGGRAPH 2008 Papers. ACM, New York, 25:1–25:10.
    37. Weissmann, S. and Pinkall, U. 2010. Filament-Based smoke with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 Papers. ACM, New York, 115:1–115:12.
    38. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. In ACM SIGGRAPH 2009 Papers. ACM, New York, 39:1–39:8.
    39. Yudovich, V. I. 1963. Non-Stationary flow of an ideal incompressible liquid. USSR Comput. Math. Math. Phys. 3, 6, 1407–1456.
    40. Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. In ACM SIGGRAPH 2005 Papers. ACM, New York, 965–972.

ACM Digital Library Publication:



Overview Page: