“Fire in paradise: mesoscale simulation of wildfires” by Hädrich, Banuti, Palubicki, Pirk and Michels

  • ©Torsten Hädrich, Daniel T. Banuti, Wojtek Palubicki, Soren Pirk, and Dominik L. Michels




    Fire in paradise: mesoscale simulation of wildfires

Session/Category Title:   Summary and Q&A: Smoke and Fire Simulation



    Resulting from changing climatic conditions, wildfires have become an existential threat across various countries around the world. The complex dynamics paired with their often rapid progression renders wildfires an often disastrous natural phenomenon that is difficult to predict and to counteract. In this paper we present a novel method for simulating wildfires with the goal to realistically capture the combustion process of individual trees and the resulting propagation of fires at the scale of forests. We rely on a state-of-the-art modeling approach for large-scale ecosystems that enables us to represent each plant as a detailed 3D geometric model. We introduce a novel mathematical formulation for the combustion process of plants – also considering effects such as heat transfer, char insulation, and mass loss – as well as for the propagation of fire through the entire ecosystem. Compared to other wildfire simulations which employ geometric representations of plants such as cones or cylinders, our detailed 3D tree models enable us to simulate the interplay of geometric variations of branching structures and the dynamics of fire and wood combustion. Our simulation runs at interactive rates and thereby provides a convenient way to explore different conditions that affect wildfires, ranging from terrain elevation profiles and ecosystem compositions to various measures against wildfires, such as cutting down trees as firebreaks, the application of fire retardant, or the simulation of rain.


    1. S. R. Abades, A. Gaxiola, and P. A. Marquet. 2014. Fire, percolation thresholds and the savanna forest transition: a neutral model approach. Journal of Ecology 102, 6 (2014), 1386–1393.Google ScholarCross Ref
    2. C. Anand, B. Shotorban, S. Mahalingam, S. McAllister, and D. Weise. 2017. Physics-Based Modeling of Live Wildland Fuel Ignition Experiments in the FIST Apparatus. Combustion Science and Technology 189 (2017).Google Scholar
    3. M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10–34.Google Scholar
    4. O. Argudo, C. Andújar, A. Chica, E. Guérin, J. Digne, A. Peytavie, and E. Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer 33, 6 (2017), 1005–1015.Google ScholarDigital Library
    5. O. Argudo, A. Chica, and C. Andujar. 2016. Single-picture Reconstruction and Rendering of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57, C (2016), 55–67.Google Scholar
    6. O. Argudo, E. Galin, A. Peytavie, A. Paris, and E. Guérin. 2020. Simulation, Modeling and Authoring of Glaciers. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6 (2020).Google Scholar
    7. S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and O. Deussen. 2005. Realistic real-time rendering of landscapes using billboard clouds. Computer Graphics Forum 24, 3 (2005), 507–516.Google ScholarCross Ref
    8. B. Beneš, N. Andrysco, and O. Stava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH’09). Eurographics Association, Goslar, DEU, 9–16.Google Scholar
    9. J. Bloomenthal. 1985. Modeling the Mighty Maple. SIGGRAPH Comput. Graph. 19, 3 (July 1985), 305–311.Google ScholarDigital Library
    10. C. F. Bohren and D. B. Thorud. 1973. Two theoretical models of radiation heat transfer between forest trees and snowpacks. Agric. For. Meteorol. 11 (1973), 3–16.Google ScholarCross Ref
    11. R. Bridson. 2008. Fluid Simulation for Computer Graphics. A K Peters, CRC Press.Google Scholar
    12. E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373–382.Google Scholar
    13. V. P. Carey. 1992. Liquid-Vapor Phase-Change Phenomena. Taylor & Francis.Google Scholar
    14. X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. 2008. Sketch-Based Tree Modeling Using Markov Random Field. ACM Trans. Graph. 27, 5, Article 109 (Dec. 2008), 9 pages.Google ScholarDigital Library
    15. N. P. Cheney, J. S. Gould, and W. R. Catchpole. 1993. The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands. International Journal of Wildland Fire 3, 1 (1993), 31–44.Google ScholarCross Ref
    16. N. Chiba, K. Muraoka, H. Takahashi, and M. Miura. 1994. Two-dimensional visual simulation of flames, smoke and the spread of fire. JVCA 5, 1 (1994), 37–53.Google ScholarCross Ref
    17. B. V. Chileen, K. K. McLauchlan, P. E. Higuera, M. Parish, and B. N. Shuman. 2020. Vegetation response to wildfire and climate forcing in a Rocky Mountain lodgepole pine forest over the past 2500 years. The Holocene 30, 11 (2020), 1493–1503.Google ScholarCross Ref
    18. J. Coen. 2005. Simulation of the Big Elk Fire using coupled atmosphere-fire modeling. International Journal of Wildland Fire 14 (2005), 49–59.Google ScholarCross Ref
    19. R. L. Cook, J. Halstead, M. Planck, and D. Ryu. 2007. Stochastic Simplification of Aggregate Detail. ACM Trans. Graph. 26, 3 (July 2007), 79.Google ScholarDigital Library
    20. G. Cordonnier, P. Ecormier, E. Galin, J. Gain, B. Benes, and M.-P. Cani. 2018. Interactive Generation of Time-evolving, Snow-Covered Landscapes with Avalanches. CGF 37, 2 (2018), 497–509.Google ScholarCross Ref
    21. G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 12 pages.Google ScholarDigital Library
    22. W. A. Côté. 1968. Chemical Composition of Wood. Springer Berlin Heidelberg, Berlin, Heidelberg, 55–78.Google Scholar
    23. P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. 1988. Plant Models Faithful to Botanical Structure and Development. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 151–158.Google ScholarDigital Library
    24. C. Deul, T. Kugelstadt, M. Weiler, and J. Bender. 2018. Direct Position-Based Solver for Stiff Rods. Computer Graphics Forum 37, 6 (2018), 313–324.Google ScholarCross Ref
    25. O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS ’02 (2002), 219–226.Google ScholarDigital Library
    26. O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275–286.Google Scholar
    27. A. J. Dowdy, M. D. Fromm, and N. McCarthy. 2017. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. Journal of Geophysical Research (Atmospheres) 122, 14 (July 2017), 7342–7354.Google Scholar
    28. J.-L. Dupuy and M. Larini. 2000. Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects. International Journal of Wildland Fire 9, 3 (2000), 155–172.Google ScholarCross Ref
    29. D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. 2002. Texturing and Modeling: A Procedural Approach (3rd ed.). Morgan Kaufmann Publishers Inc.Google Scholar
    30. L. Hernández Encinas, S. Hoya White, A. Martín del Rey, and G. Rodríguez Sánchez. 2007. Modelling forest fire spread using hexagonal cellular automata. Appl. Math. Model. 31, 6 (2007), 1213–1227.Google ScholarCross Ref
    31. R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual Simulation of Smoke. Proc. of ACM SIGGRAPH (2001), 15–22.Google Scholar
    32. M. Finney, J. Cohen, J. Forthofer, S. McAllister, M. Gollner, D. Gorham, K. Saito, N. Akafuah, B. Adam, and J. English. 2015. Role of buoyant flame dynamics in wildfire spread. Proceedings of the National Academy of Sciences 112, 32 (2015), 9833–9838.Google ScholarCross Ref
    33. A. Fournier, D. Fussell, and L. Carpenter. 1982. Computer Rendering of Stochastic Models. Commun. ACM 25, 6 (1982), 371–384.Google ScholarDigital Library
    34. E. Galin, E. Guérin, A. Peytavie, G. Cordonnier, M.-P. Cani, B. Benes, and J. Gain. 2019. A Review of Digital Terrain Modeling. Computer Graphics Forum 38, 2 (2019), 553–577.Google ScholarCross Ref
    35. É. Guérin, J. Digne, É. Galin, A. Peytavie, C. Wolf, B. Benes, and B. Martinez. 2017. Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks. ACM Trans. Graph. 36, 6, Article 228 (Nov. 2017), 13 pages.Google Scholar
    36. N. Gustenyov, N. K Akafuah, A. Salaimeh, M. Finney, S. McAllister, and K. Saito. 2018. Scaling nonreactive cross flow over a heated plate to simulate forest fires. Combustion and Flame 197 (2018), 340–354.Google ScholarCross Ref
    37. R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees. Comp. Graph. Forum 28, 2 (2009), 523–532.Google ScholarCross Ref
    38. T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. CGF 36, 2 (2017), 49–61.Google ScholarDigital Library
    39. T. Hädrich, M. Makowski, W. Pałubicki, D. T. Banuti, S. Pirk, and D. L. Michels. 2020. Stormscapes: Simulating Cloud Dynamics in the Now. ACM Transaction on Graphics 39, 6, Article 175 (12 2020).Google ScholarDigital Library
    40. M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. 2003. Simulation of Cloud Dynamics on Graphics Hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS ’03). Eurographics Association, 92–101.Google Scholar
    41. Y. Hong, D. Zhu, X. Qiu, and Z. Wang. 2010. Geometry-based Control of Fire Simulation. Vis. Comput. 26, 9 (2010), 1217–1228.Google ScholarDigital Library
    42. C. Horvath and W. Geiger. 2009. Directable, High-Resolution Simulation of Fire on the GPU. ACM Trans. Graph. 28, 3, Article 41 (July 2009), 8 pages.Google ScholarDigital Library
    43. ISO. 1975. Standard Atmosphere. Technical Report ISO 2533:1975. International Organization for Standardization.Google Scholar
    44. M. Jaeger and J. Teng. 2003. Tree and plant volume imaging – An introductive study towards voxelized functional landscapes. PMA (2003).Google Scholar
    45. K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie. 2020. Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. (2020).Google Scholar
    46. Y. Kawaguchi. 1982. A Morphological Study of the Form of Nature. SIGGRAPH Comput. Graph. 16, 3 (July 1982), 223–232.Google ScholarDigital Library
    47. A. D. Kelley, M. C. Malin, and G. M. Nielson. 1988. Terrain Simulation Using a Model of Stream Erosion. SIGGRAPH Comput. Graph. 22, 4 (1988), 263–268.Google ScholarDigital Library
    48. E. Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, Boston, MA, 1–84.Google Scholar
    49. A. Lamorlette and N. Foster. 2002. Structural Modeling of Flames for a Production Environment. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02). Association for Computing Machinery, New York, NY, USA, 729–735.Google Scholar
    50. B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69–80.Google Scholar
    51. M. J. Lawes, A. Richards, J. Dathe, and J. J. Midgley. 2011. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 12 (2011), 2057–2069.Google ScholarCross Ref
    52. B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (Jan. 1999), 56–65.Google ScholarDigital Library
    53. S. Liu, T. An, Z. Gong, and I. Hagiwara. 2012. Physically Based Simulation of Solid Objects Burning. Springer Berlin Heidelberg, Berlin, Heidelberg, 110–120.Google Scholar
    54. Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texture-lobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.Google ScholarDigital Library
    55. Y. Lizhong, C. Xiaojun, Z. Xiaodong, and F. Weicheng. 2002. A modified model of pyrolysis for charring materials in fire. Int. J. Eng. Sci. 40, 9 (2002), 1011–1021.Google ScholarCross Ref
    56. S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120.Google ScholarDigital Library
    57. M. Makowski, T. Hädrich, J. Scheficzyk, D. L. Michels, S. Pirk, and W. Pałubicki. 2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.Google ScholarDigital Library
    58. M. M. Masinda, L. Sun, G. Wang, and T. Hu. 2020. Moisture content thresholds for ignition and rate of fire spread for various dead fuels in northeast forest ecosystems of China. Journal of Forestry Research (05 Jun 2020).Google Scholar
    59. Z. Melek and J. Keyser. 2002. Interactive simulation of fire. Pacific Graphics (2002), 431–432.Google Scholar
    60. H. Mendoza, A. Brown, and A. Ricks. 2019. Modeling High Heat Flux Combustion of Coniferous Trees Using Chemically Reacting Lagrangian Particles (WSSCI Fall Technical Meeting of the Western States Section of the Combustion Institute).Google Scholar
    61. D. L. Michels, J. P. T. Mueller, and G. A. Sobottka. 2015. A physically based approach to the accurate simulation of stiff fibers and stiff fiber meshes. Comput. Graph. 53 (2015), 136–146.Google ScholarDigital Library
    62. R. Minamino and M. Tateno. 2014. Tree branching: Leonardo da Vinci’s rule versus biomechanical models. PloS one 9, 4 (2014), e93535.Google ScholarCross Ref
    63. S. Monedero, J. Ramirez, D. Molina-Terrén, and A. Cardil. 2017. Simulating wildfires backwards in time from the final fire perimeter in point-functional fire models. Environmental Modelling & Software 92 (2017), 163–168.Google ScholarDigital Library
    64. R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397–410.Google Scholar
    65. B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).Google ScholarDigital Library
    66. B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Computer Graphics Forum 30, 6 (2011), 1708–1718.Google ScholarCross Ref
    67. D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. 2002. Physically Based Modeling and Animation of Fire. ACM Trans. Graph. 21, 3 (2002), 721–728.Google ScholarDigital Library
    68. D. Q. Nguyen, R. P. Fedkiw, and M. Kang. 2001. A Boundary Condition Capturing Method for Incompressible Flame Discontinuities. J. Comput. Phys. 172, 1 (2001), 71–98.Google ScholarDigital Library
    69. M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.Google Scholar
    70. P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.Google ScholarDigital Library
    71. W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.Google ScholarDigital Library
    72. Z. Pan and D. Manocha. 2017. Efficient Solver for Spacetime Control of Smoke. ACM Trans. Graph. 36, 5, Article 162 (July 2017), 13 pages.Google ScholarDigital Library
    73. E. Pastor, L. Zárate, E. Planas, and J. Arnaldos. 2003. Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science 29, 2 (2003), 139–153.Google ScholarCross Ref
    74. V. Pegoraro and S. G. Parker. 2006. Physically-Based Realistic Fire Rendering. In Eurographics Workshop on Natural Phenomena, N. Chiba and E. Galin (Eds.). The Eurographics Association.Google Scholar
    75. K. Perlin. 1985. An Image Synthesizer. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association for Computing Machinery, 287–296.Google ScholarDigital Library
    76. M. Pharr, W. Jakob, and G. Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc.Google Scholar
    77. S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Pałubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (Nov. 2017), 12 pages.Google ScholarDigital Library
    78. S. Pirk, T. Niese, O. Deussen, and B. Neubert. 2012a. Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31, 6, Article 169 (2012), 10 pages.Google ScholarDigital Library
    79. S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.Google ScholarDigital Library
    80. S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012b. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.Google ScholarDigital Library
    81. P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247–253.Google ScholarDigital Library
    82. L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-based Plant Modeling. ACM Trans. Graph. 25, 3 (July 2006), 599–604.Google ScholarDigital Library
    83. N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke Simulation for Large Scale Phenomena. ACM Trans. Graph. 22, 3 (July 2003), 703–707.Google ScholarDigital Library
    84. A. Reche-Martinez, I. Martin, and G. Drettakis. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. 23, 3 (2004), 720–727.Google Scholar
    85. G. D. Richards. 1990. An elliptical growth model of forest fire fronts and its numerical solution. Internat. J. Numer. Methods Engrg. 30, 6 (1990), 1163–1179.Google ScholarCross Ref
    86. D. W. Schwilk. 2003. Flammability Is a Niche Construction Trait: Canopy Architecture Affects Fire Intensity. The American Naturalist 162, 6 (2003), 725–733.Google ScholarCross Ref
    87. R. Seidl, W. Rammer, R. M. Scheller, and T. A. Spies. 2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling 231 (2012), 87–100.Google ScholarCross Ref
    88. H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and D. L. Michels. 2021. Accurately Solving Physical Systems with Graph Learning. arXiv:physics.comp-ph/2006.03897Google Scholar
    89. A. R. Smith. 1984. Plants, Fractals, and Formal Languages. In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’84). Association for Computing Machinery, New York, NY, USA, 1–10.Google ScholarDigital Library
    90. J. Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121–128.Google Scholar
    91. M. Stamminger and G. Drettakis. 2001. Interactive Sampling and Rendering for Complex and Procedural Geometry. In Proceedings of the 12th Eurographics Conference on Rendering (EGWR’01). Eurographics Association, Goslar, DEU, 151–162.Google Scholar
    92. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. CGF 33, 6 (2014), 118–131.Google ScholarDigital Library
    93. J. Steinhoff and D. Underhill. 1994. Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys. Fluids 6, 8 (1994), 2738–2744.Google ScholarCross Ref
    94. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for Phase-change and Varied Materials. ACM Trans. Graph. 33, 4, Article 138 (2014), 11 pages.Google ScholarDigital Library
    95. R. Sun, S. K. Krueger, M. A. Jenkins, M. A. Zulauf, and J. J. Charney. 2009. The importance of fireatmosphere coupling and boundary-layer turbulence to wildfire spread. International Journal of Wildland Fire 18, 1 (2009), 50–60.Google ScholarCross Ref
    96. P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages.Google ScholarDigital Library
    97. V. D. Thi, M. Khelifa, M. El Ganaoui, and Y. Rogaume. 2016. Finite element modelling of the pyrolysis of wet wood subjected to fire. Fire Safety Journal 81 (2016), 85–96.Google ScholarCross Ref
    98. J. van Lawick van Pabst and H. Jense. 1996. Dynamic Terrain Generation Based on Multifractal Techniques. In High Performance Computing for Computer Graphics and Visualisation, M. Chen, P. Townsend, and J. A. Vince (Eds.). London, 186–203.Google Scholar
    99. H. Y. Wang, M. Z. Kang, J. Hua, and X. J. Wang. 2013. Modeling Plant Plasticity from a Biophysical Model: Biomechanics. In Proceedings of the 12th ACM SIGGRAPH Intl. Conf. on VRCAI. ACM, 115–122.Google Scholar
    100. J. Weber and J. Penn. 1995. Creation and Rendering of Realistic Trees. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing Machinery, New York, NY, USA, 119–128.Google Scholar
    101. J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2 (2009), 541–550.Google ScholarCross Ref
    102. H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. 26, 4 (2007), Article 19, 13 pages.Google Scholar
    103. M. K. Yau and R. R. Rogers. 1996. A Short Course in Cloud Physics. Elsevier Science.Google Scholar
    104. Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.Google ScholarDigital Library
    105. Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin. 2003. Voxels on fire [computer animation]. In IEEE Visualization, 2003. VIS 2003. 271–278.Google Scholar

ACM Digital Library Publication:

Overview Page: