“Fire in paradise: mesoscale simulation of wildfires” by Hädrich, Banuti, Palubicki, Pirk and Michels
Conference:
Type(s):
Title:
- Fire in paradise: mesoscale simulation of wildfires
Session/Category Title: Summary and Q&A: Smoke and Fire Simulation
Presenter(s)/Author(s):
Abstract:
Resulting from changing climatic conditions, wildfires have become an existential threat across various countries around the world. The complex dynamics paired with their often rapid progression renders wildfires an often disastrous natural phenomenon that is difficult to predict and to counteract. In this paper we present a novel method for simulating wildfires with the goal to realistically capture the combustion process of individual trees and the resulting propagation of fires at the scale of forests. We rely on a state-of-the-art modeling approach for large-scale ecosystems that enables us to represent each plant as a detailed 3D geometric model. We introduce a novel mathematical formulation for the combustion process of plants – also considering effects such as heat transfer, char insulation, and mass loss – as well as for the propagation of fire through the entire ecosystem. Compared to other wildfire simulations which employ geometric representations of plants such as cones or cylinders, our detailed 3D tree models enable us to simulate the interplay of geometric variations of branching structures and the dynamics of fire and wood combustion. Our simulation runs at interactive rates and thereby provides a convenient way to explore different conditions that affect wildfires, ranging from terrain elevation profiles and ecosystem compositions to various measures against wildfires, such as cutting down trees as firebreaks, the application of fire retardant, or the simulation of rain.
References:
- S. R. Abades, A. Gaxiola, and P. A. Marquet. 2014. Fire, percolation thresholds and the savanna forest transition: a neutral model approach. Journal of Ecology 102, 6 (2014), 1386–1393.Google ScholarCross Ref
- C. Anand, B. Shotorban, S. Mahalingam, S. McAllister, and D. Weise. 2017. Physics-Based Modeling of Live Wildland Fuel Ignition Experiments in the FIST Apparatus. Combustion Science and Technology 189 (2017).Google Scholar
- M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10–34.Google Scholar
- O. Argudo, C. Andújar, A. Chica, E. Guérin, J. Digne, A. Peytavie, and E. Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer 33, 6 (2017), 1005–1015.Google ScholarDigital Library
- O. Argudo, A. Chica, and C. Andujar. 2016. Single-picture Reconstruction and Rendering of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57, C (2016), 55–67.Google Scholar
- O. Argudo, E. Galin, A. Peytavie, A. Paris, and E. Guérin. 2020. Simulation, Modeling and Authoring of Glaciers. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6 (2020).Google Scholar
- S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and O. Deussen. 2005. Realistic real-time rendering of landscapes using billboard clouds. Computer Graphics Forum 24, 3 (2005), 507–516.Google ScholarCross Ref
- B. Beneš, N. Andrysco, and O. Stava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH’09). Eurographics Association, Goslar, DEU, 9–16.Google Scholar
- J. Bloomenthal. 1985. Modeling the Mighty Maple. SIGGRAPH Comput. Graph. 19, 3 (July 1985), 305–311.Google ScholarDigital Library
- C. F. Bohren and D. B. Thorud. 1973. Two theoretical models of radiation heat transfer between forest trees and snowpacks. Agric. For. Meteorol. 11 (1973), 3–16.Google ScholarCross Ref
- R. Bridson. 2008. Fluid Simulation for Computer Graphics. A K Peters, CRC Press.Google Scholar
- E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373–382.Google Scholar
- V. P. Carey. 1992. Liquid-Vapor Phase-Change Phenomena. Taylor & Francis.Google Scholar
- X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. 2008. Sketch-Based Tree Modeling Using Markov Random Field. ACM Trans. Graph. 27, 5, Article 109 (Dec. 2008), 9 pages.Google ScholarDigital Library
- N. P. Cheney, J. S. Gould, and W. R. Catchpole. 1993. The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands. International Journal of Wildland Fire 3, 1 (1993), 31–44.Google ScholarCross Ref
- N. Chiba, K. Muraoka, H. Takahashi, and M. Miura. 1994. Two-dimensional visual simulation of flames, smoke and the spread of fire. JVCA 5, 1 (1994), 37–53.Google ScholarCross Ref
- B. V. Chileen, K. K. McLauchlan, P. E. Higuera, M. Parish, and B. N. Shuman. 2020. Vegetation response to wildfire and climate forcing in a Rocky Mountain lodgepole pine forest over the past 2500 years. The Holocene 30, 11 (2020), 1493–1503.Google ScholarCross Ref
- J. Coen. 2005. Simulation of the Big Elk Fire using coupled atmosphere-fire modeling. International Journal of Wildland Fire 14 (2005), 49–59.Google ScholarCross Ref
- R. L. Cook, J. Halstead, M. Planck, and D. Ryu. 2007. Stochastic Simplification of Aggregate Detail. ACM Trans. Graph. 26, 3 (July 2007), 79.Google ScholarDigital Library
- G. Cordonnier, P. Ecormier, E. Galin, J. Gain, B. Benes, and M.-P. Cani. 2018. Interactive Generation of Time-evolving, Snow-Covered Landscapes with Avalanches. CGF 37, 2 (2018), 497–509.Google ScholarCross Ref
- G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 12 pages.Google ScholarDigital Library
- W. A. Côté. 1968. Chemical Composition of Wood. Springer Berlin Heidelberg, Berlin, Heidelberg, 55–78.Google Scholar
- P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. 1988. Plant Models Faithful to Botanical Structure and Development. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 151–158.Google ScholarDigital Library
- C. Deul, T. Kugelstadt, M. Weiler, and J. Bender. 2018. Direct Position-Based Solver for Stiff Rods. Computer Graphics Forum 37, 6 (2018), 313–324.Google ScholarCross Ref
- O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS ’02 (2002), 219–226.Google ScholarDigital Library
- O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275–286.Google Scholar
- A. J. Dowdy, M. D. Fromm, and N. McCarthy. 2017. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. Journal of Geophysical Research (Atmospheres) 122, 14 (July 2017), 7342–7354.Google Scholar
- J.-L. Dupuy and M. Larini. 2000. Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects. International Journal of Wildland Fire 9, 3 (2000), 155–172.Google ScholarCross Ref
- D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. 2002. Texturing and Modeling: A Procedural Approach (3rd ed.). Morgan Kaufmann Publishers Inc.Google Scholar
- L. Hernández Encinas, S. Hoya White, A. Martín del Rey, and G. Rodríguez Sánchez. 2007. Modelling forest fire spread using hexagonal cellular automata. Appl. Math. Model. 31, 6 (2007), 1213–1227.Google ScholarCross Ref
- R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual Simulation of Smoke. Proc. of ACM SIGGRAPH (2001), 15–22.Google Scholar
- M. Finney, J. Cohen, J. Forthofer, S. McAllister, M. Gollner, D. Gorham, K. Saito, N. Akafuah, B. Adam, and J. English. 2015. Role of buoyant flame dynamics in wildfire spread. Proceedings of the National Academy of Sciences 112, 32 (2015), 9833–9838.Google ScholarCross Ref
- A. Fournier, D. Fussell, and L. Carpenter. 1982. Computer Rendering of Stochastic Models. Commun. ACM 25, 6 (1982), 371–384.Google ScholarDigital Library
- E. Galin, E. Guérin, A. Peytavie, G. Cordonnier, M.-P. Cani, B. Benes, and J. Gain. 2019. A Review of Digital Terrain Modeling. Computer Graphics Forum 38, 2 (2019), 553–577.Google ScholarCross Ref
- É. Guérin, J. Digne, É. Galin, A. Peytavie, C. Wolf, B. Benes, and B. Martinez. 2017. Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks. ACM Trans. Graph. 36, 6, Article 228 (Nov. 2017), 13 pages.Google Scholar
- N. Gustenyov, N. K Akafuah, A. Salaimeh, M. Finney, S. McAllister, and K. Saito. 2018. Scaling nonreactive cross flow over a heated plate to simulate forest fires. Combustion and Flame 197 (2018), 340–354.Google ScholarCross Ref
- R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees. Comp. Graph. Forum 28, 2 (2009), 523–532.Google ScholarCross Ref
- T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. CGF 36, 2 (2017), 49–61.Google ScholarDigital Library
- T. Hädrich, M. Makowski, W. Pałubicki, D. T. Banuti, S. Pirk, and D. L. Michels. 2020. Stormscapes: Simulating Cloud Dynamics in the Now. ACM Transaction on Graphics 39, 6, Article 175 (12 2020).Google ScholarDigital Library
- M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. 2003. Simulation of Cloud Dynamics on Graphics Hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS ’03). Eurographics Association, 92–101.Google Scholar
- Y. Hong, D. Zhu, X. Qiu, and Z. Wang. 2010. Geometry-based Control of Fire Simulation. Vis. Comput. 26, 9 (2010), 1217–1228.Google ScholarDigital Library
- C. Horvath and W. Geiger. 2009. Directable, High-Resolution Simulation of Fire on the GPU. ACM Trans. Graph. 28, 3, Article 41 (July 2009), 8 pages.Google ScholarDigital Library
- ISO. 1975. Standard Atmosphere. Technical Report ISO 2533:1975. International Organization for Standardization.Google Scholar
- M. Jaeger and J. Teng. 2003. Tree and plant volume imaging – An introductive study towards voxelized functional landscapes. PMA (2003).Google Scholar
- K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie. 2020. Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. (2020).Google Scholar
- Y. Kawaguchi. 1982. A Morphological Study of the Form of Nature. SIGGRAPH Comput. Graph. 16, 3 (July 1982), 223–232.Google ScholarDigital Library
- A. D. Kelley, M. C. Malin, and G. M. Nielson. 1988. Terrain Simulation Using a Model of Stream Erosion. SIGGRAPH Comput. Graph. 22, 4 (1988), 263–268.Google ScholarDigital Library
- E. Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, Boston, MA, 1–84.Google Scholar
- A. Lamorlette and N. Foster. 2002. Structural Modeling of Flames for a Production Environment. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02). Association for Computing Machinery, New York, NY, USA, 729–735.Google Scholar
- B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69–80.Google Scholar
- M. J. Lawes, A. Richards, J. Dathe, and J. J. Midgley. 2011. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 12 (2011), 2057–2069.Google ScholarCross Ref
- B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (Jan. 1999), 56–65.Google ScholarDigital Library
- S. Liu, T. An, Z. Gong, and I. Hagiwara. 2012. Physically Based Simulation of Solid Objects Burning. Springer Berlin Heidelberg, Berlin, Heidelberg, 110–120.Google Scholar
- Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texture-lobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.Google ScholarDigital Library
- Y. Lizhong, C. Xiaojun, Z. Xiaodong, and F. Weicheng. 2002. A modified model of pyrolysis for charring materials in fire. Int. J. Eng. Sci. 40, 9 (2002), 1011–1021.Google ScholarCross Ref
- S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120.Google ScholarDigital Library
- M. Makowski, T. Hädrich, J. Scheficzyk, D. L. Michels, S. Pirk, and W. Pałubicki. 2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.Google ScholarDigital Library
- M. M. Masinda, L. Sun, G. Wang, and T. Hu. 2020. Moisture content thresholds for ignition and rate of fire spread for various dead fuels in northeast forest ecosystems of China. Journal of Forestry Research (05 Jun 2020).Google Scholar
- Z. Melek and J. Keyser. 2002. Interactive simulation of fire. Pacific Graphics (2002), 431–432.Google Scholar
- H. Mendoza, A. Brown, and A. Ricks. 2019. Modeling High Heat Flux Combustion of Coniferous Trees Using Chemically Reacting Lagrangian Particles (WSSCI Fall Technical Meeting of the Western States Section of the Combustion Institute).Google Scholar
- D. L. Michels, J. P. T. Mueller, and G. A. Sobottka. 2015. A physically based approach to the accurate simulation of stiff fibers and stiff fiber meshes. Comput. Graph. 53 (2015), 136–146.Google ScholarDigital Library
- R. Minamino and M. Tateno. 2014. Tree branching: Leonardo da Vinci’s rule versus biomechanical models. PloS one 9, 4 (2014), e93535.Google ScholarCross Ref
- S. Monedero, J. Ramirez, D. Molina-Terrén, and A. Cardil. 2017. Simulating wildfires backwards in time from the final fire perimeter in point-functional fire models. Environmental Modelling & Software 92 (2017), 163–168.Google ScholarDigital Library
- R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397–410.Google Scholar
- B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).Google ScholarDigital Library
- B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Computer Graphics Forum 30, 6 (2011), 1708–1718.Google ScholarCross Ref
- D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. 2002. Physically Based Modeling and Animation of Fire. ACM Trans. Graph. 21, 3 (2002), 721–728.Google ScholarDigital Library
- D. Q. Nguyen, R. P. Fedkiw, and M. Kang. 2001. A Boundary Condition Capturing Method for Incompressible Flame Discontinuities. J. Comput. Phys. 172, 1 (2001), 71–98.Google ScholarDigital Library
- M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.Google Scholar
- P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.Google ScholarDigital Library
- W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.Google ScholarDigital Library
- Z. Pan and D. Manocha. 2017. Efficient Solver for Spacetime Control of Smoke. ACM Trans. Graph. 36, 5, Article 162 (July 2017), 13 pages.Google ScholarDigital Library
- E. Pastor, L. Zárate, E. Planas, and J. Arnaldos. 2003. Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science 29, 2 (2003), 139–153.Google ScholarCross Ref
- V. Pegoraro and S. G. Parker. 2006. Physically-Based Realistic Fire Rendering. In Eurographics Workshop on Natural Phenomena, N. Chiba and E. Galin (Eds.). The Eurographics Association.Google Scholar
- K. Perlin. 1985. An Image Synthesizer. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association for Computing Machinery, 287–296.Google ScholarDigital Library
- M. Pharr, W. Jakob, and G. Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc.Google Scholar
- S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Pałubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (Nov. 2017), 12 pages.Google ScholarDigital Library
- S. Pirk, T. Niese, O. Deussen, and B. Neubert. 2012a. Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31, 6, Article 169 (2012), 10 pages.Google ScholarDigital Library
- S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.Google ScholarDigital Library
- S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012b. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.Google ScholarDigital Library
- P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247–253.Google ScholarDigital Library
- L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-based Plant Modeling. ACM Trans. Graph. 25, 3 (July 2006), 599–604.Google ScholarDigital Library
- N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke Simulation for Large Scale Phenomena. ACM Trans. Graph. 22, 3 (July 2003), 703–707.Google ScholarDigital Library
- A. Reche-Martinez, I. Martin, and G. Drettakis. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. 23, 3 (2004), 720–727.Google Scholar
- G. D. Richards. 1990. An elliptical growth model of forest fire fronts and its numerical solution. Internat. J. Numer. Methods Engrg. 30, 6 (1990), 1163–1179.Google ScholarCross Ref
- D. W. Schwilk. 2003. Flammability Is a Niche Construction Trait: Canopy Architecture Affects Fire Intensity. The American Naturalist 162, 6 (2003), 725–733.Google ScholarCross Ref
- R. Seidl, W. Rammer, R. M. Scheller, and T. A. Spies. 2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling 231 (2012), 87–100.Google ScholarCross Ref
- H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and D. L. Michels. 2021. Accurately Solving Physical Systems with Graph Learning. arXiv:physics.comp-ph/2006.03897Google Scholar
- A. R. Smith. 1984. Plants, Fractals, and Formal Languages. In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’84). Association for Computing Machinery, New York, NY, USA, 1–10.Google ScholarDigital Library
- J. Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121–128.Google Scholar
- M. Stamminger and G. Drettakis. 2001. Interactive Sampling and Rendering for Complex and Procedural Geometry. In Proceedings of the 12th Eurographics Conference on Rendering (EGWR’01). Eurographics Association, Goslar, DEU, 151–162.Google Scholar
- O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. CGF 33, 6 (2014), 118–131.Google ScholarDigital Library
- J. Steinhoff and D. Underhill. 1994. Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys. Fluids 6, 8 (1994), 2738–2744.Google ScholarCross Ref
- A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for Phase-change and Varied Materials. ACM Trans. Graph. 33, 4, Article 138 (2014), 11 pages.Google ScholarDigital Library
- R. Sun, S. K. Krueger, M. A. Jenkins, M. A. Zulauf, and J. J. Charney. 2009. The importance of fireatmosphere coupling and boundary-layer turbulence to wildfire spread. International Journal of Wildland Fire 18, 1 (2009), 50–60.Google ScholarCross Ref
- P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages.Google ScholarDigital Library
- V. D. Thi, M. Khelifa, M. El Ganaoui, and Y. Rogaume. 2016. Finite element modelling of the pyrolysis of wet wood subjected to fire. Fire Safety Journal 81 (2016), 85–96.Google ScholarCross Ref
- J. van Lawick van Pabst and H. Jense. 1996. Dynamic Terrain Generation Based on Multifractal Techniques. In High Performance Computing for Computer Graphics and Visualisation, M. Chen, P. Townsend, and J. A. Vince (Eds.). London, 186–203.Google Scholar
- H. Y. Wang, M. Z. Kang, J. Hua, and X. J. Wang. 2013. Modeling Plant Plasticity from a Biophysical Model: Biomechanics. In Proceedings of the 12th ACM SIGGRAPH Intl. Conf. on VRCAI. ACM, 115–122.Google Scholar
- J. Weber and J. Penn. 1995. Creation and Rendering of Realistic Trees. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing Machinery, New York, NY, USA, 119–128.Google Scholar
- J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2 (2009), 541–550.Google ScholarCross Ref
- H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. 26, 4 (2007), Article 19, 13 pages.Google Scholar
- M. K. Yau and R. R. Rogers. 1996. A Short Course in Cloud Physics. Elsevier Science.Google Scholar
- Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.Google ScholarDigital Library
- Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin. 2003. Voxels on fire [computer animation]. In IEEE Visualization, 2003. VIS 2003. 271–278.Google Scholar