“Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models”

  • ©Daniel G. Aliaga, Ignacio Garcia-Dorado, Prashanth Bhalachandran, Paul Schmid, and Dev Niyogi




    Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models

Session/Category Title: Simulation for Virtual Worlds




    We present the first realistic, physically based, fully coupled, real-time weather design tool for use in urban procedural modeling. We merge designing of a 3D urban model with a controlled long-lasting spatiotemporal interactive simulation of weather. Starting from the fundamental dynamical equations similar to those used in state-of-the-art weather models, we present a novel simplified urban weather model for interactive graphics. Control of physically based weather phenomena is accomplished via an inverse modeling methodology. In our results, we present several scenarios of forward design, inverse design with high-level and detailed-level weather control and optimization, and comparisons of our method against well-known weather simulation results and systems.


    1. Nash’at Ahmad and John Lindeman. 2007. Euler solutions using flux-based wave decomposition. International Journal for Numerical Methods in Fluids 54, 1, 47–72.Google ScholarCross Ref
    2. Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4, 53. Google ScholarDigital Library
    3. Akio Arakawa and Vivian R. Lamb. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics 17, 173–265.Google Scholar
    4. S. Pal Arya. 1999. Air Pollution Meteorology and Dispersion. Oxford University Press, New York, NY.Google Scholar
    5. Dale Barker, Xiang-Yu Huang, Zhiquan Liu, Tom Auligné, Xin Zhang, Steven Rugg, Raji Ajjaji, et al. 2012. The Weather Research and Forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society 93, 6, 831–843.Google ScholarCross Ref
    6. A. K Blackadar. 1978. Modeling pollutant transfer during daytime convection. In Proceedings of the 4th Symposium on Turbulence, Diffusion, and Air Pollution. 443–447.Google Scholar
    7. James F. Blinn. 1982. Light reflection functions for simulation of clouds and dusty surfaces. ACM SIGGRAPH Computer Graphics 16, 3, 21–29. Google ScholarDigital Library
    8. Howard B. Bluestein and Carlton R. Parks. 1983. A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Monthly Weather Review 111, 10, 2034–2046.Google ScholarCross Ref
    9. Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A connection between partial symmetry and inverse procedural modeling. ACM Transactions on Graphics 29, 4, 104. Google ScholarDigital Library
    10. Carles Bosch, Pierre-Yves Laffont, Holly Rushmeier, Julie Dorsey, and George Drettakis. 2011. Image-guided weathering: A new approach applied to flow phenomena. ACM Transactions on Graphics 30, 3, Article No. 20. Google ScholarDigital Library
    11. Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. 2008. Interactive multiple anisotropic scattering in clouds. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games. ACM, New York, NY, 173–182. Google ScholarDigital Library
    12. Massimiliano Caramia and Paolo Dell’Olmo. 2008. Multi-Objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms. Springer Science 8 Business Media.Google Scholar
    13. Fei Chen and Jimy Dudhia. 2001. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review 129, 4, 569–585.Google ScholarCross Ref
    14. F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. S. B. Grimmond, S. Grossman-Clarke, T. Loridan, et al. 2011. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology 31, 2, 273–288.Google ScholarCross Ref
    15. Yanyun Chen, Lin Xia, Tien-Tsin Wong, Xin Tong, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2005. Visual simulation of weathering by γ-ton tracing. ACM Transactions on Graphics 24, 3, 1127–1133. Google ScholarDigital Library
    16. CityEngine. 2016. Home Page. Retrieved February 8, 2017, from http://www.esri.comGoogle Scholar
    17. William R. Cotton, R. A. Pielke Sr., R. L. Walko, G. E. Liston, C. J. Tremback, H. Jiang, R. L. McAnelly, et al. 2003. RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics 82, 1–4, 5–29.Google ScholarCross Ref
    18. Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita, and Tomoyuki Nishita. 2000. A simple, efficient method for realistic animation of clouds. In Computer Graphics and Interactive Techniques. ACM, New York, NY, 19–28. Google ScholarDigital Library
    19. Yoshinori Dobashi, Katsutoshi Kusumoto, Tomoyuki Nishita, and Tsuyoshi Yamamoto. 2008. Feedback control of cumuliform cloud formation based on computational fluid dynamics. ACM Transactions on Graphics 27, 3, 94. Google ScholarDigital Library
    20. Daniel Dunbar and Greg Humphreys. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Transactions on Graphics 25, 3, 503–508. Google ScholarDigital Library
    21. Dale R. Durran. 1989. Improving the anelastic approximation. Journal of the Atmospheric Sciences 46, 11, 1453–1461.Google ScholarCross Ref
    22. Dale R. Durran. 2013. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Vol. 32. Springer Science 8 Business Media.Google Scholar
    23. David S. Ebert. 2003. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann. Google ScholarDigital Library
    24. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, 15–22. Google ScholarDigital Library
    25. I. Garcia-Dorado, D. G. Aliaga, and S. V. Ukkusuri. 2014. Designing large-scale interactive traffic animations for urban modeling. Computer Graphics Forum 33, 2, 411–420. Google ScholarDigital Library
    26. Kshitiz Garg and Shree K. Nayar. 2006. Photorealistic rendering of rain streaks. ACM Transactions on Graphics 25, 3, 996–1002. Google ScholarDigital Library
    27. A. F. Gero, A. J. Pitman, G. T. Narisma, C. Jacobson, and R. A. Pielke. 2006. The impact of land cover change on storms in the Sydney Basin, Australia. Global and Planetary Change 54, 1, 57–78.Google ScholarCross Ref
    28. Yoshiharu Gotanda, Masaki Kawase, and Masanori Kakimoto. 2015. Real-time rendering of physically based optical effects in theory and practice. In Proceedings of ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York, NY, 23. Google ScholarDigital Library
    29. Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and Anselmo Lastra. 2003. Simulation of cloud dynamics on graphics hardware. In Proceedings of the Conference on Graphics Hardware. 92–101. Google ScholarDigital Library
    30. Mark J. Harris and Anselmo Lastra. 2001. Real-time cloud rendering. Computer Graphics Forum 20, 3, 76–85.Google ScholarCross Ref
    31. W. Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97–109.Google ScholarCross Ref
    32. James R. Holton and Gregory J. Hakim. 2012. An Introduction to Dynamic Meteorology. Vol. 88. Academic Press.Google Scholar
    33. Claire A. Jantz, Scott J. Goetz, David Donato, and Peter Claggett. 2010. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems 34, 1, 1–16.Google ScholarCross Ref
    34. James T. Kajiya and Brian P. Von Herzen. 1984. Ray tracing volume densities. ACM SIGGRAPH Computer Graphics 18, 3, 165–174. Google ScholarDigital Library
    35. Edwin Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulation. American Meteorological Society.Google Scholar
    36. Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and Allen McPherson. 2003. A model for volume lighting and modeling. IEEE Transactions on Visualization and Computer Graphics 9, 2, 150–162. Google ScholarDigital Library
    37. Edward N. Lorenz. 1969. Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences 26, 4, 636–646.Google ScholarCross Ref
    38. Terry Lucke and Peter W. B. Nichols. 2015. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Science of the Total Environment, 784–92.Google Scholar
    39. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on Graphics 32, 4, 104. Google ScholarDigital Library
    40. Dinesh Manocha and Ming C. Lin. 2012. Interactive large-scale crowd simulation. In Digital Urban Modeling and Simulation. Springer, 221–235.Google Scholar
    41. J. S. Marshall and W. M. Palmer. 1948. The distribution of raindrops with size. Journal of Meteorology 5, 4, 165–166.Google ScholarCross Ref
    42. Fedor Mesinger, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley Ebisuzaki, Dušan Jovic, et al. 2006. North American regional reanalysis. Bulletin of the American Meteorological Society 87, 3, 343–360.Google ScholarCross Ref
    43. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 6, 1087–1092.Google ScholarCross Ref
    44. John Michalakes and Manish Vachharajani. 2008. GPU acceleration of numerical weather prediction. Parallel Processing Letters 18, 04, 531–548.Google ScholarCross Ref
    45. Jarno Mielikainen, Bormin Huang, Jun Wang, H.-L. Allen Huang, and Mitchell D. Goldberg. 2013. Compute unified device architecture (CUDA)-based parallelization of WRF Kessler cloud microphysics scheme. Computers and Geosciences 52, 292–299. Google ScholarDigital Library
    46. Ryo Miyazaki, Satoru Yoshida, Yoshinori Dobashi, and Tomoyula Nishita. 2001. A method for modeling clouds based on atmospheric fluid dynamics. In Computer Graphics and Applications. IEEE, Los Alamitos, CA, 363–372. Google ScholarDigital Library
    47. A. S. Monin and A. Obukhov. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contributions of the Geophysical Institute of the Slovak Academy of Sciences 24, 151, 163–187.Google Scholar
    48. Jennifer Mullaney, Terry Lucke, and Stephen J. Trueman. 2015. A review of benefits and challenges in growing street trees in paved urban environments. Landscape and Urban Planning 134, 157–166.Google ScholarCross Ref
    49. Przemyslaw Musialski, Peter Wonka, Daniel G. Aliaga, Michael Wimmer, L Gool, and Werner Purgathofer. 2013. A survey of urban reconstruction. Computer Graphics Forum 32, 6, 146–177. Google ScholarDigital Library
    50. Frederik Nebeker. 1995. Calculating the Weather: Meteorology in the 20th Century. Vol. 60. Academic Press.Google Scholar
    51. Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. 1996. Display of clouds taking into account multiple anisotropic scattering and sky light. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, 379–386. Google ScholarDigital Library
    52. Tomoyuki Nishita, Hiroshi Iwasaki, Yoshinori Dobashi, and Eihachiro Nakamae. 1997. A modeling and rendering method for snow by using metaballs. Computer Graphics Forum 16, 3, C357–C364.Google ScholarCross Ref
    53. Dev Niyogi, Patrick Pyle, Ming Lei, S. Pal Arya, Chandra M. Kishtawal, Marshall Shepherd, Fei Chen, and Brian Wolfe. 2011. Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology 50, 5, 1129–1144.Google ScholarCross Ref
    54. J. Noilhan and S. Planton. 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review 117, 3, 536–549.Google ScholarCross Ref
    55. Timothy R. Oke. 2002. Boundary Layer Climates. Routledge.Google Scholar
    56. Derek Overby, Zeki Melek, and John Keyser. 2002. Interactive physically-based cloud simulation. In Computer Graphics and Applications. IEEE, Los Alamitos, CA, 469–470. Google ScholarDigital Library
    57. Yoav I. H. Parish and Pascal Müller. 2001. Procedural modeling of cities. In Computer Graphics and Interactive Techniques. ACM, New York, NY, 301–308. Google ScholarDigital Library
    58. Roger Pielke, David Stokowski, Jih-Wang Wang, Tomislava Vukicevic, Giovanni Leoncini, Toshihisa Matsui, Christopher L. Castro, et al. 2007. Satellite-based model parameterization of diabatic heating. Eos, Transactions American Geophysical Union 88, 8, 96–97.Google ScholarCross Ref
    59. Roger A. Pielke Sr. 2013. Mesoscale Meteorological Modeling. Vol. 98. Academic Press.Google Scholar
    60. R. J. Purser and L. M. Leslie. 1988. A semi-implicit, semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid. Monthly Weather Review 116, 10, 2069–2080.Google ScholarCross Ref
    61. David A. Randall and George J. Huffman. 1980. A stochastic model of cumulus clumping. Atmospheric Sciences 37, 9, 2068–2078.Google ScholarCross Ref
    62. M. Santamouris. 2014. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 103, 682–703.Google ScholarCross Ref
    63. Paul E. Schmid and Dev Niyogi. 2013. Impact of city size on precipitation-modifying potential. Geophysical Research Letters 40, 19, 5263–5267.Google ScholarCross Ref
    64. Jason Sewall, David Wilkie, and Ming C. Lin. 2011. Interactive hybrid simulation of large-scale traffic. ACM Transactions on Graphics 30, 6, Article No. 135. Google ScholarDigital Library
    65. William C. Skamarock, Joseph B. Klemp, Jimy Dudhia, David O. Gill, Dale M Barker, Wei Wang, and Jordan G. Powers. 2005. A Description of the Advanced Research WRF Version 2. Technical Report. National Center for Atmospheric Research, Boulder, CO.Google Scholar
    66. William D. Solecki, Cynthia Rosenzweig, Lily Parshall, Greg Pope, Maria Clark, Jennifer Cox, and Mary Wiencke. 2005. Mitigation of the heat island effect in urban New Jersey. Global Environmental Change Part B: Environmental Hazards 6, 1, 39–49.Google Scholar
    67. Su-Tzai Soong and Yoshimitsu Ogura. 1973. A comparison between axisymmetric and slab-symmetric cumulus cloud models. Journal of the Atmospheric Sciences 30, 5, 879–893.Google ScholarCross Ref
    68. John Steinhoff and David Underhill. 1994. Modification of the Euler equations for vorticity confinement: Application to the computation of interacting vortex rings. Physics of Fluids 6, 8, 2738–2744.Google ScholarCross Ref
    69. J. M. Straka, Robert B. Wilhelmson, Louis J. Wicker, John R. Anderson, and Kelvin K. Droegemeier. 1993. Numerical solutions of a non-linear density current: A benchmark solution and comparisons. International Journal for Numerical Methods in Fluids 17, 1, 1–22.Google ScholarCross Ref
    70. Roland B. Stull. 1988. An Introduction to Boundary Layer Meteorology. Vol. 13. Springer Science 8 Business Media.Google Scholar
    71. Roland B. Stull. 2000. Meteorology for Scientists and Engineers. Brooks/Cole.Google Scholar
    72. Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun. 2011. Metropolis procedural modeling. ACM Transactions on Graphics 30, 2, 11. Google ScholarDigital Library
    73. Otto Tetens. 1930. Uber einige meteorologische Begriffe. Zeitschrift fur Geophysik 6, 297–309.Google Scholar
    74. U.S. Census Bureau. 2016. Home Page. Retrieved February 8, 2017, from http://www.census.gov.Google Scholar
    75. Carlos A. Vanegas, Daniel G. Aliaga, Peter Wonka, Pascal Müller, Paul Waddell, and Benjamin Watson. 2010. Modelling the appearance and behaviour of urban spaces. Computer Graphics Forum 29, 1, 25–42.Google ScholarCross Ref
    76. Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul Waddell. 2012. Inverse design of urban procedural models. ACM Transactions on Graphics 31, 6, 168. Google ScholarDigital Library
    77. White Roof Project. n.d. The White Roof Project. Retrieved February 8, 2017, from http://www.whiteroofproject.orgGoogle Scholar
    78. Louis J. Wicker and William C. Skamarock. 2002. Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review 130, 8, 2088–2097.Google ScholarCross Ref
    79. Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant Architecture. Vol. 22. ACM, New York, NY. Google ScholarDigital Library
    80. Magnus Wrenninge and Nafees Bin Zafar. 2011. Production volume rendering. In Proceedings of ACM SIGGRAPH 2011 Courses. ACM, New York, NY, 71.Google Scholar
    81. Chunqiang Yuan, Xiaohui Liang, Shiyu Hao, Yue Qi, and Qinping Zhao. 2014. Modelling cumulus cloud shape from a single image. Computer Graphics Forum 33, 6, 288–297. Google ScholarDigital Library
    82. Chao Lin Zhang, Fei Chen, Shi Guang Miao, Qing Chun Li, Xiang Ao Xia, and Chun Yi Xuan. 2009. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. Journal of Geophysical Research: Atmospheres–2012) 114, D2.Google Scholar

ACM Digital Library Publication:

Overview Page: