“Fast construction of accurate quaternion splines” by Ramamoorthi and Barr

  • ©Ravi Ramamoorthi and Alan H. Barr




    Fast construction of accurate quaternion splines



    In 1992, Barr et al. proposed a method for interpolating orientations with unit quaternion curves by minimizing covariant acceleration. This paper presents a simple improved method which uses cubic basis functions to achieve a speedup of up to three orders of magnitude. A new criterion for automatic refinement based on the Euler-Lagrange error functional is also introduced.


    1. A.H. BARR, B. CURRIN, S. GABRIEL, and J.E HUGHES. Smooth interpolation of orientations with angular velocity constraints using quaternions. In SIGGRAPH 92 proceedings, pages 313-320,1992.
    2. R. BARTELS, J. BEATTY, and B. BARSKY. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufman, Palo Alto, 1987.
    3. M.E COHEN. Interactive spacetime control for animation. In SIG- GRAPH 92 proceedings, pages 293-302,1992.
    4. S. GABRIEL and J. KAJIYA. Spline interpolation in curved space. In SIGGRAPH 85 course notes for State of the Art in Image Synthesis(#11), 1985.
    5. H.-J. HA. A new camera control method preserving view-up vectors. Master’s thesis, KAIST, Taejon 305-701, Korea, 1996.
    6. W.R. HAMILTON. Elements of Quaternions (Volume I, II). Chelsea Publishing Company, 1969.
    7. B. JUTTLER. Visualization of moving objects using dual quaternion curves. Computer & Graphics, 18(3):315-326,1994.
    8. B. JUTTLER and M.G. WAGNER. Computer-aided design with spatial rational B-spline motions. Journal of Mechanical Design, 118(2):193-201, June 1996.
    9. M.-J. KIM, M.-S. KIM, and S. SHIN. A C2-continuous B-spline quaternion curve interpolating a given sequence of solid orientations. In Computer Animation 95 Proceedings, pages 72-81,1995.
    10. M.-J. KIM, M.-S. KIM, and S. SHIN. A general construction scheme for unit quaternion curves with simple high order derivatives. In SIGGRAPH 95 proceedings, pages 369-376,1995.
    11. M.-S. KIM and K.-W. NAM. Interpolating solid orientations with circular blending quaternion curves. Computer Aided Design, 27(5):385-398,1995.
    12. Z. LIU and M.E COHEN. Keyframe motion optimization by relaxing speed and timing. In 6th Eurographics Workshop on Animation and Simulation (Maastricht 1995), pages 144-153,1995.
    13. Numerical Algorithms Group, Ltd. NAG Fortran Library Document, 1988.
    14. R. RAMAMOORTHI, C. BALL, and A.H. BARR. Dynamic splines with constraints for animation. Technical Report CS-TR-97-03, California Institute of Technology, Included on CD-ROM, January 1997. ftp://ftp.cs.caltech.edu/tr/cs-tr-97-03.ps.Z.
    15. B. RAVANI and E PARK. Bezier curves on riemannian manifolds and lie groups with kinematic applications. Journal of Mechanical Design, 117(1):36-40,March 1995.
    16. K. SHOEMAKE. Animating rotation with quaternion curves. In SIGGRAPH 85 proceedings, pages 245-254,1985.
    17. K. SHOEMAKE. Quaternion calculus for animation. In SIGGRAPH 91 course notes for Math for Siggraph(#2), 1991.
    18. D. TERZOPOULOS and H. QIN. Dynamic Nurbs with geometric constraints for interactive sculpting. ACM Transactions on Graphics, 13(2):103-136, April 1994.
    19. W. WANG and B. JOE. Orientation interpolation in quaternion space using spherical biarcs. In Graphics Interface 93, pages 24-32,1993.
    20. W. WELCH and A. WITKIN. Variational surface modeling. In SIGGRAPH 92 proceedings, pages 157-166,1992.
    21. D. ZWILLINGER. Handbook of Differential Equations. Academic Press, San Diego, 1989.

ACM Digital Library Publication:

Overview Page: