“Fast automatic skinning transformations” by Jacobson, Baran, Kavan, Popović and Sorkine-Hornung

  • ©Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine-Hornung




    Fast automatic skinning transformations



    Skinning transformations are a popular way to articulate shapes and characters. However, traditional animation interfaces require all of the skinning transformations to be specified explicitly, typically using a control structure (a rig). We propose a system where the user specifies only a subset of the degrees of freedom and the rest are automatically inferred using nonlinear, rigidity energies. By utilizing a low-order model and reformulating our energy functions accordingly, our algorithm runs orders of magnitude faster than previous methods without compromising quality. In addition to the immediate boosts in performance for existing modeling and real time animation tools, our approach also opens the door to new modes of control: disconnected skeletons combined with shape-aware inverse kinematics. With automatically generated skinning weights, our method can also be used for fast variational shape modeling.


    1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 165:1–165:10. Google ScholarDigital Library
    2. Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graphi. 12, 3, 386–395. Google ScholarDigital Library
    3. Au, O. K.-C., Fu, H., Tai, C.-L., and Cohen-Or, D. 2007. Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3, 83. Google ScholarDigital Library
    4. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3, 72:1–72:8. Google ScholarDigital Library
    5. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982–990. Google ScholarDigital Library
    6. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3, 34:1–34:11. Google ScholarDigital Library
    7. Blair, P. 1994. Cartoon Animation. Walter Foster Publishing, Inc., Irvine, CA, USA.Google Scholar
    8. Borosán, P., Howard, R., Zhang, S., and Nealen, A. 2010. Hybrid mesh editing. In Proc. EUROGRAPHICS, Short papers, 41–44.Google Scholar
    9. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 1, 213–230. Google ScholarDigital Library
    10. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. SGP, 11–20. Google ScholarDigital Library
    11. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339–347.Google ScholarCross Ref
    12. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4, 38:1–38:6. Google ScholarDigital Library
    13. Der, K. G., Sumner, R. W., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25, 3, 1174–1179. Google ScholarDigital Library
    14. Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30, 4, 73:1–73:10. Google ScholarDigital Library
    15. Forstmann, S., and Ohya, J. 2006. Fast skeletal animation by skinned arc-spline based deformation. In Proc. EUROGRAPHICS, Short papers.Google Scholar
    16. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., and McDougall, R. 2007. Deformation styles for spline-based skeletal animation. In Proc. SCA, 141–150. Google ScholarDigital Library
    17. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum 30, 8, 2246–2257.Google ScholarCross Ref
    18. Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2, 15:1–15:12. Google ScholarDigital Library
    19. Hildebrandt, K., Schulz, C., Tycowicz, C. V., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1–119:11. Google ScholarDigital Library
    20. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126–1134. Google ScholarDigital Library
    21. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. In Proc. SGP, 1449–1457. Google ScholarDigital Library
    22. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134–1141. Google ScholarDigital Library
    23. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6, 165:1–165:8. Google ScholarDigital Library
    24. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1–78:8. Google ScholarDigital Library
    25. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71:1–71:9. Google ScholarDigital Library
    26. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561–566. Google ScholarDigital Library
    27. Kavan, L., Collins, S., Zara, J., and O’Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1–105:23. Google ScholarDigital Library
    28. Kavan, L., Collins, S., and O’Sullivan, C. 2009. Automatic linearization of nonlinear skinning. In Proc. I3D, 49–56. Google ScholarDigital Library
    29. Kavan, L., Sloan, P., and O’Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327–336.Google ScholarCross Ref
    30. Landreneau, E., and Schaefer, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6, 1945–1954.Google ScholarCross Ref
    31. Langer, T., and Seidel, H.-P. 2008. Higher order barycentric coordinates. Comput. Graph. Forum 27, 2, 459–466.Google ScholarCross Ref
    32. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. ACM SIGGRAPH, 165–172. Google ScholarDigital Library
    33. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3, 78:1–78:10. Google ScholarDigital Library
    34. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5, 1495–1504. Google ScholarDigital Library
    35. Manson, J., and Schaefer, S. 2011. Hierarchical deformation of locally rigid meshes. Comput. Graph. Forum 30, 8, 2387–2396.Google ScholarCross Ref
    36. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 37:1–37:12. Google ScholarDigital Library
    37. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4, 1400–1423. Google ScholarDigital Library
    38. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3, 562–568. Google ScholarDigital Library
    39. Pekelny, Y., and Gotsman, C. 2008. Articulated object reconstruction and markerless motion capture from depth video. Comput. Graph. Forum 27, 2, 399–408.Google ScholarCross Ref
    40. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3, 533–540. Google ScholarDigital Library
    41. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proc. ACM SIGGRAPH Symposium on High Performance Graphics, 135–142. Google ScholarDigital Library
    42. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. ACM SIGGRAPH, 151–160. Google ScholarDigital Library
    43. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3, 81:1–81:10. Google ScholarDigital Library
    44. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP, 109–116. Google ScholarDigital Library
    45. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488–495. Google ScholarDigital Library
    46. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3, 80:1–80:7. Google ScholarDigital Library
    47. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proc. SCA, 129–138. Google ScholarDigital Library
    48. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3, 73. Google ScholarDigital Library
    49. Wareham, R., and Lasenby, J. 2008. Bone Glow: An improved method for the assignment of weights for mesh deformation. Articulated Motion and Deformable Objects, 63–71. Google ScholarDigital Library
    50. Weber, O., Ben-Chen, M., and Gotsman, C. 2009. Complex barycentric coordinates with applications to planar shape deformation. Comput. Graph. Forum 28, 2, 587–597.Google ScholarCross Ref
    51. Yang, X., Somasekharan, A., and Zhang, J. J. 2006. Curve skeleton skinning for human and creature characters. Comput. Animat. Virtual Worlds 17, 3–4, 281–292. Google ScholarDigital Library

ACM Digital Library Publication: