“Fast approximations for boundary element based brittle fracture simulation” by Hahn and Wojtan

  • ©David Hahn and Chris Wojtan




    Fast approximations for boundary element based brittle fracture simulation

Session/Category Title: PHYSICAL PHENOMENA




    We present a boundary element based method for fast simulation of brittle fracture. By introducing simplifying assumptions that allow us to quickly estimate stress intensities and opening displacements during crack propagation, we build a fracture algorithm where the cost of each time step scales linearly with the length of the crack-front.The transition from a full boundary element method to our faster variant is possible at the beginning of any time step. This allows us to build a hybrid method, which uses the expensive but more accurate BEM while the number of degrees of freedom is low, and uses the fast method once that number exceeds a given threshold as the crack geometry becomes more complicated.Furthermore, we integrate this fracture simulation with a standard rigid-body solver. Our rigid-body coupling solves a Neumann boundary value problem by carefully separating translational, rotational and deformational components of the collision forces and then applying a Tikhonov regularizer to the resulting linear system. We show that our method produces physically reasonable results in standard test cases and is capable of dealing with complex scenes faster than previous finite- or boundary element approaches.


    1. Aliabadi, M. 1997. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 50, 2, 83–96.Google ScholarCross Ref
    2. Baker, M., Zafar, N. B., Carlson, M., Coumans, E., Criswell, B., Harada, T., and Knight, P. 2011. Destruction and dynamics for film and game production. In ACM SIGGRAPH2011 Courses.Google Scholar
    3. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE TVCG 13, 370–378. Google ScholarDigital Library
    4. Bender, J., Erleben, K., Trinkle, J., and Coumans, E. 2012. Interactive simulation of rigid body dynamics in computer graphics. In EUROGRAPHICS 2012 State of the Art Reports.Google Scholar
    5. Chadwick, J. N., Zheng, C., and James, D. L. 2012. Precomputed acceleration noise for improved rigid-body sound. ACM Trans. Graph. 31, 4, 103:1–103:9. Google ScholarDigital Library
    6. Chen, Z., Yao, M., Feng, R., and Wang, H. 2014. Physics-inspired adaptive fracture refinement. ACM Trans. Graph. 33, 113:1–113:7. Google ScholarDigital Library
    7. Coumans, E. 2015. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses. Google ScholarDigital Library
    8. Elek, P., and Jaramaz, S. 2008. Fragment size distribution in dynamic fragmentation: Geometric probability approach. FME Transactions 36, 2, 59–65.Google Scholar
    9. Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M. 2002. 3D fracture analysis by the symmetric Galerkin BEM. Computational Mechanics 28, 3-4, 220–232.Google ScholarCross Ref
    10. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-based fractured appearance. Computer Graphics Forum 31, 4, 1547–1556. Google ScholarDigital Library
    11. Glondu, L., Marchal, M., and Dumont, G. 2013. Realtime simulation of brittle fracture using modal analysis. IEEE TVCG 19, 201–209. Google ScholarDigital Library
    12. Gravouil, A., Moës, N., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets — part II: level set update. INT J NUMER METH ENG 53, 11, 2569–2586.Google ScholarCross Ref
    13. Gross, D., and Seelig, T. 2011. Fracture Mechanics, 2nd ed. Springer.Google Scholar
    14. Hahn, D., and Wojtan, C. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans. Graph. 34, 4, 151:1–151:12. Google ScholarDigital Library
    15. Hertz, H. 1881. Über die Berührung fester elastischer Körper. J. reine und angewandte Math. 92, 156–171.Google Scholar
    16. Hirota, K., Tanoue, Y., and Kaneko, T. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 371–378.Google ScholarCross Ref
    17. Iben, H. N., and O’Brien, J. F. 2006. Generating surface crack patterns. In Proc. ACM SIGGRAPH/Eurographics SCA 2006, 177–185. Google ScholarDigital Library
    18. Ingraffea, A. R., and Wawrzynek, P. A. 2003. Finite Element Methods for Linear Elastic Fracture Mechanics, Chapter 3.1 in Comprehensive Structural Integrity. Elsevier Science Ltd.Google Scholar
    19. James, D. L., and Pai, D. K. 1999. Artdefo: Accurate real time deformable objects. In SIGGRAPH 99, Annual Conference Series, 65–72. Google ScholarDigital Library
    20. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 50:1–50:10. Google ScholarDigital Library
    21. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In Proc. ACM SIGGRAPH/Eurographics SCA 2014, 11–19. Google ScholarDigital Library
    22. Kielhorn, L. 2009. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Verl. der Techn. Univ. Graz.Google Scholar
    23. Koschier, D., Lipponer, S., and Bender, J. 2014. Adaptive tetrahedral meshes for brittle fracture simulation. In Proc. ACM SIGGRAPH/Eurographics SCA 2014, 57–66. Google ScholarDigital Library
    24. Levine, J. A., Bargteil, A. W., Corsi, C., Tessendorf, J., and Geist, R. 2014. A peridynamic perspective on spring-mass fracture. In Proc. ACM SIGGRAPH/Eurographics SCA 2014, 47–55. Google ScholarDigital Library
    25. Mamou, K., and Ghorbel, F. 2009. A simple and efficient approach for 3D mesh approximate convex decomposition. In 16th IEEE Int. Conf. Image Processing (ICIP), 3501–3504. Google ScholarDigital Library
    26. Mayboroda, S., and Mitrea, M. 2006. Integral Methods in Science and Engineering: Theoretical and Practical Aspects. Birkhäuser Boston, ch. The Poisson Problem for the Lamé System on Low-dimensional Lipschitz Domains, 137–160.Google Scholar
    27. Messner, M., and Schanz, M. 2010. An accelerated symmetric time-domain boundary element formulation for elasticity. Engineering Analysis with Boundary Elements 34, 11, 944–955.Google ScholarCross Ref
    28. Moës, N., Gravouil, A., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets — part I: mechanical model. INT J NUMER METH ENG 53, 11, 2549–2568.Google ScholarCross Ref
    29. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 385–392. Google ScholarDigital Library
    30. Mousavi, S. E., Grinspun, E., and Sukumar, N. 2011. Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. INT J NUMER METH ENG 86, 4-5, 560–574.Google ScholarCross Ref
    31. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Proc. real-time simulation of deformation and fracture of stiff materials. In Eurographic Workshop on Computer Animation and Simulation, 113–124. Google ScholarDigital Library
    32. Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32, 115:1–115:10. Google ScholarDigital Library
    33. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 210–219. Google ScholarDigital Library
    34. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Annual Conference Series, 137–146. Google ScholarDigital Library
    35. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291–294. Google ScholarDigital Library
    36. Parker, E. G., and O’Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proc. ACM SIGGRAPH/Eurographics SCA 2009, 165–175. Google ScholarDigital Library
    37. Patricio, M., and Mattheij, R. 2007. Crack propagation analysis. CASA-report 0723.Google Scholar
    38. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957–964. Google ScholarDigital Library
    39. Popov, V. 2010. Contact Mechanics and Friction. Physical Principles and Applications. Springer.Google Scholar
    40. Schvartzman, S. C., and Otaduy, M. A. 2014. Fracture animation based on high-dimensional voronoi diagrams. In Proc. 18th ACM SIGGRAPH i3D ’14, 15–22. Google ScholarDigital Library
    41. Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Computer Graphics Forum 20, 81–91.Google ScholarCross Ref
    42. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 102:1–102:10. Google ScholarDigital Library
    43. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In Proc. ACM SIGGRAPH/Eurographics SCA 2009, 155–164. Google ScholarDigital Library
    44. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 269–278. Google ScholarDigital Library
    45. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1–69:13. Google ScholarDigital Library
    46. Zhu, Y., Bridson, R., and Greif, C. 2015. Simulating rigid body fracture with surface meshes. ACM Trans. Graph. 34, 4, 150:1–150:11. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: