“Embedded thin shells for wrinkle simulation” by Kry and Rémillard

  • ©Paul G. Kry and Olivier Rémillard

Conference:


Type:


Title:

    Embedded thin shells for wrinkle simulation

Session/Category Title: Rods & Shells


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a new technique for simulating high resolution surface wrinkling deformations of composite objects consisting of a soft interior and a harder skin. We combine high resolution thin shells with coarse finite element lattices and define frequency based constraints that allow the formation of wrinkles with properties matching those predicted by the physical parameters of the composite object. Our two-way coupled model produces the expected wrinkling behavior without the computational expense of a large number of volumetric elements to model deformations under the surface. We use C1 quadratic shape functions for the interior deformations, allowing very coarse resolutions to model the overall global deformation efficiently, while avoiding visual artifacts of wrinkling at discretization boundaries. We demonstrate that our model produces wrinkle wavelengths that match both theoretical predictions and high resolution volumetric simulations. We also show example applications in simulating wrinkles on passive objects, such as furniture, and for wrinkles on faces in character animation.

References:


    1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In SIGGRAPH ’98, 43–54. Google ScholarDigital Library
    2. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Symposium on Geometry Processing, 227–230. Google ScholarDigital Library
    3. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: toward directable thin shells. ACM Trans. Graph. 26, 3 (July), 50:1–50:10. Google ScholarDigital Library
    4. Blinn, J. F. 1978. Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph. 12, 3 (Aug.), 286–292. Google ScholarDigital Library
    5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In SIGGRAPH ’02, 594–603. Google ScholarDigital Library
    6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Symposium on Computer Animation, SCA ’03, 28–36. Google ScholarDigital Library
    7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586–593. Google ScholarDigital Library
    8. Danielson, D. 1973. Human skin as an elastic membrane. Journal of Biomechanics 6, 5, 539–546.Google ScholarCross Ref
    9. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. on Vis. and Comp. Graph. 3, 3, 201–214. Google ScholarDigital Library
    10. Genzer, J., and Groenewold, J. 2006. Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2, 4, 310–323.Google ScholarCross Ref
    11. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Symp. on Comp. Anim., 62–67. Google ScholarDigital Library
    12. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Symp. on Comp. Anim., Eurographics Association, 131–140. Google ScholarDigital Library
    13. Irving, G., Teran, J., and Fedkiw, R. 2006. Tetrahedral and hexahedral invertible finite elements. Graph. Mod. 68, 2, 66–89. Google ScholarDigital Library
    14. Jimenez, J., Echevarria, J. I., Oat, C., and Gutierrez, D. 2011. GPU Pro 2. AK Peters Ltd., ch. Practical and Realistic Facial Wrinkles Animation, 15–27.Google Scholar
    15. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July), 93:1–93:10. Google ScholarDigital Library
    16. Kelley, C. 1987. Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms. Society for Industrial and Applied Mathematics.Google Scholar
    17. Larboulette, C., and Cani, M.-P. 2004. Real-time dynamic wrinkles. In Computer Graphics International, 522–525. Google ScholarDigital Library
    18. Lévy, B., and Liu, Y. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 4, 119:1–119:11. Google ScholarDigital Library
    19. Magnenat-Thalmann, N., Kalra, P., Luc Leveque, J., Bazin, R., Batisse, D., and Querleux, B. 2002. A computational skin model: fold and wrinkle formation. IEEE Trans. Information Technology in Biomedicine 6, 4, 317–323. Google ScholarDigital Library
    20. Mahadevan, L., and Rica, S. 2005. Self-organized origami. Science 307, 5716, 1740–1740.Google Scholar
    21. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4, 37:1–37:12. Google ScholarDigital Library
    22. Mezger, J., Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Interactive physically-based shape editing. Computer Aided Geometric Design 26, 6, 680–694. Google ScholarDigital Library
    23. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385–392. Google ScholarDigital Library
    24. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004, GI ’04, 239–246. Google ScholarDigital Library
    25. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Symposium on Computer Animation, SCA ’02, 49–54. Google ScholarDigital Library
    26. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1–52:9. Google ScholarDigital Library
    27. Paige, C., and Saunders, M. 1975. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis 12, 4, 617–629.Google ScholarCross Ref
    28. Parker, E. G., and O’Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Symposium on Computer Animation, SCA ’09, 165–175. Google ScholarDigital Library
    29. Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. (SIGGRAPH ASIA) 29, 6 (Dec.), 157:1–157:8. Google ScholarDigital Library
    30. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4 (Aug.), 151–160. Google ScholarDigital Library
    31. Seiler, M., Spillmann, J., and Harders, M. 2012. Enriching coarse interactive elastic objects with high-resolution data-driven deformations. In Symp. on Comptuer Animation, 9–17. Google ScholarDigital Library
    32. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3 (July), 417–425. Google ScholarDigital Library
    33. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Symposium on Computer Animation, 81–90. Google ScholarDigital Library
    34. Terzopoulos, D., and Waters, K. 1990. Physically-based facial modelling, analysis, and animation. The journal of visualization and computer animation 1, 2, 73–80.Google Scholar
    35. Terzopoulos, D., and Witkin, A. 1988. Physically based models with rigid and deformable components. IEEE Comput. Graph. Appl. 8, 6 (Nov.), 41–51. Google ScholarDigital Library
    36. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 205–214. Google ScholarDigital Library
    37. Thomaszewski, B., Wacker, M., and Strasser, W. 2006. A consistent bending model for cloth simulation with corotational subdivision finite elements. In Symposium on Computer Animation, SCA ’06, 107–116. Google ScholarDigital Library
    38. Timoshenko, S., and Gere, J. 2009. Theory of Elastic Stability. Dover Civil and Mechanical Engineering Series. Dover.Google Scholar
    39. Venkataraman, K., Lodha, S., and Raghavan, R. 2005. A kinematic-variational model for animating skin with wrinkles. Computers & Graphics 29, 5, 756–770. Google ScholarDigital Library
    40. Wang, Y., Wang, C. C., and Yuen, M. M. 2006. Fast energy-based surface wrinkle modeling. Comp. Graph. 30, 1, 111–125. Google ScholarDigital Library
    41. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1–47:8. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: