“Efficient Fluid Simulation on the Surface of a Sphere” by Hill and Henderson

  • ©David Hill and Ronald D. Henderson




    Efficient Fluid Simulation on the Surface of a Sphere

Session/Category Title: FLUIDS SIMULATION




    For the purposes of computer graphics, we have developed a simulation tool to model fluid flow on the surface of a sphere with the inclusion of control parameters for the benefit of art directability. Difficulties associated with the use of spherical coordinates were surmounted by the use of locally modified consistent equations that result from an analysis of the singular equations in the neighborhood of the poles. The resulting system was solved efficiently for only a small additional cost when compared to a two-dimensional planar simulation.


    1. G. K. Batchelor. 1967. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge UK.
    2. R. Bridson. 2008. Fluid Simulation for Computer Graphics. A. K. Peters, Wellesley, MA. 
    3. M. F. Carfora. 2007. Semi-Lagrangian advection on a spherical geodesic grid. International Journal for Numerical Methods in Fluids 55, 2 (2007), 127–142.
    4. L. Carvalho, M. Andrade, and L. Velho. 2012. Fluid simulation on surfaces in the GPU. In 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images (2012), 205–212. DOI:http://dx.doi.org/ 10.1109/SIBGRAPI.2012.36 
    5. R. Courant, K. Friedrichs, and H. Lewy. 1967. On the partial difference equations of mathematical physics. IBM Journal 11, 2 (1967), 215–234. 
    6. R. Courant, E. Isaacson, and M. Rees. 1952. On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Applied Mathematics 5, 3 (1952), 243–255.
    7. S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1, Article 4 (Jan. 2007). DOI:http://dx.doi.org/10.1145/1189762.1189766 
    8. R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). ACM, New York, NY, 15–22. DOI:http://dx.doi.org/10.1145/383259.383260 
    9. K. Hegeman, H. Ashikhmin, H. Wang, H. Qin, and X. Gu. 2009. GPU-based conformal flow on surfaces. Commun. Inf. Syst. 9 (2009), 197–212.
    10. J. R. Holton. 1992. An Introduction to Dynamic Meterorology (3rd ed.). Academic Press.
    11. Intel. 2011. Intel Math Kernal Library Reference Manual. Intel Coproration. Document number 630813-041US.
    12. J. Iversen and R. Sakaguchi. 2004. Growing up with fluid simulation on the day after tomorrow. In ACM SIGGRAPH 2004 Sketches (SIGGRAPH’04). ACM, New York, NY. DOI:http://dx.doi.org/10.1145/1186223.1186401 
    13. J. Molemaker, J. M. Cohen, S. Patel, and J. Noh. 2008. Low viscosity flow simulations for animation. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation. 
    14. W. M. Putman and S.-J. Lin. 2007. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 227 (2007), 55–78. 
    15. D. Randall. 2011. An Introduction to Atmospheric Modeling. Technical Report. Colorado State University. Course Notes: book form.
    16. N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable photorealistic liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’04). Eurographics Association, Aire-la-Ville, Switzerland, 193–202. DOI:http://dx.doi.org/10.1145/1028523.1028549 
    17. N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. 22, 3 (July 2003), 703–707. DOI:http://dx.doi.org/10.1145/1201775.882335 
    18. A. Robert. 1981. A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean 19, 1 (1981), 35–46.
    19. C. Ronchi, R. Iacono, and P. S. Paolucci. 1996. The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124 (1996), 93–114. 
    20. A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. 2008. An unconditionally stable MacCormack method. J. Sci. Comput. 35 (2008), 350–371. DOI:http://dx.doi.org/10.1007/s10915-007-9166-4 
    21. L. Shi and Y. Yu. 2004. Inviscid and incompressible fluid simulation on triangle meshes. Comput. Animation Virtual Worlds 15, 3–4 (2004), 173–181. DOI:http://dx.doi.org/10.1002/cav.19 
    22. J. Stam. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing, New York, NY, 121–128. DOI:http://dx.doi.org/10.1145/311535.311548 
    23. J. Stam. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22, 3 (July 2003), 724–731. 
    24. J. Steinhoff and D. Underhill. 1994. Modification of the Euler equation for vorticity confinement: Application to the computation of interacting vortex rings. Phys. Fluids 8, 6 (1994), 2738–2744.
    25. J. B. White III and J. J. Dongarra 2011. High-performance high-resolution semi-Lagrangian tracer transport on a sphere. J. Comput. Phys. 230 (2011), 6778–6799. 
    26. M. Wrenninge and D. Roble. 2003. Fluid simulation interaction techniques. In ACM SIGGRAPH 2003 Sketches and Applications (SIGGRAPH’03). ACM, New York, NY, 1. DOI:http://dx.doi.org/10.1145/965400.965558

ACM Digital Library Publication:

Overview Page: