“Efficiency-aware multiple importance sampling for bidirectional rendering algorithms” by Grittmann, Yazici, Georgiev and Slusallek

  • ©Pascal Grittmann, Ömercan Yazici, Iliyan Georgiev, and Philipp Slusallek




    Efficiency-aware multiple importance sampling for bidirectional rendering algorithms



    Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling technique. Thus a major criticism of complex combined estimators, such as bidirectional path tracing, is that they can be significantly less efficient on common scenes than simpler algorithms like forward path tracing. We propose a general method to improve MIS efficiency: By cheaply estimating the efficiencies of various technique and sample-count combinations, we can pick the best one. The key ingredient is a numerically robust and efficient scheme that uses the samples of one MIS combination to compute the efficiency of multiple other combinations. For example, we can run forward path tracing and use its samples to decide which subset of VCM to enable, and at what sampling rates. The sample count for each technique can be controlled per-pixel or globally. Applied to VCM, our approach enables robust rendering of complex scenes with caustics, without compromising efficiency on simpler scenes.


    1. Attila T. Áfra. 2019. Intel® Open Image Denoise. https://www.openimagedenoise.org/.Google Scholar
    2. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (2012), 10 pages.Google ScholarDigital Library
    3. Pascal Grittmann, Iliyan Georgiev, and Philipp Slusallek. 2021. Correlation-Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms. Comput. Graph. Forum (EG 2021) 40, 2 (2021), 231–238.Google Scholar
    4. Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek. 2019. Variance-Aware Multiple Importance Sampling. ACM Trans. Graph. (SIGGRAPH Asia 2019) 38, 6 (Nov. 2019), 9 pages.Google Scholar
    5. Pascal Grittmann, Arsène Pérard-Gayot, Philipp Slusallek, and Jaroslav Křivánek. 2018. Efficient Caustic Rendering with Lightweight Photon Mapping. Comput. Graph. Forum (EGSR ’18) 37, 4 (2018), 133–142.Google Scholar
    6. Pascal Grittmann, Ömercan Yazici, Iliyan Georgiev, and Philipp Slusallek. 2022. Implementation of Efficiency-Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms. Google ScholarCross Ref
    7. Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed metropolis light transport. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–10.Google ScholarDigital Library
    8. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (TOG) 31, 6 (2012), 10 pages.Google ScholarDigital Library
    9. Vlastimil Havran and Mateu Sbert. 2014. Optimal Combination of Techniques in Multiple Importance Sampling. In Proc. VRCAI ’14 (Shenzhen, China). ACM, New York, NY, 141–150.Google ScholarDigital Library
    10. Hera Y. He and Art B. Owen. 2014. Optimal mixture weights in multiple importance sampling. Google ScholarCross Ref
    11. Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Eurographics Workshop on Rendering Techniques. Springer, 326–335.Google ScholarCross Ref
    12. Henrik Wann Jensen. 1996. Global illumination using photon maps. In Eurographics workshop on Rendering techniques. Springer, 21–30.Google ScholarCross Ref
    13. Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, and Jaroslav Křivánek. 2019. MIS Compensation: Optimizing Sampling Techniques in Multiple Importance Sampling. ACM Trans. Graph. (SIGGRAPH Asia ’19) 38, 6 (2019), 12 pages.Google ScholarDigital Library
    14. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the metropolis light transport algorithm. Comput. Graph. Forum 21, 3 (2002), 531–540.Google ScholarCross Ref
    15. Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and Jaroslav Křivánek. 2019. Optimal Multiple Importance Sampling. ACM Trans. Graph. (SIGGRAPH 2019) 38, 4 (July 2019), 14 pages.Google Scholar
    16. Jaroslav Křivánek, Christophe Chevallier, Vladimir Koylazov, Ondřej Karlíik, Henrik Wann Jensen, and Thomas Ludwig. 2018. Realistic Rendering in Architecture and Product Visualization. In ACM SIGGRAPH 2018 Courses. Article 10, 5 pages. Google ScholarDigital Library
    17. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. 93 (Dec. 1993), 145–153.Google Scholar
    18. Heqi Lu, Romain Pacanowski, and Xavier Granier. 2013. Second-Order Approximation for Variance Reduction in Multiple Importance Sampling. Comput. Graph. Forum 32, 7 (2013), 131–136.Google ScholarCross Ref
    19. Thomas Müller. 2019. “Practical Path Guiding” in Production. In ACM SIGGRAPH Courses: Path Guiding in Production, Chapter 10 (Los Angeles, California). ACM, New York, NY, USA, 18:35–18:48. Google ScholarDigital Library
    20. David Murray, Sofiane Benzait, Romain Pacanowski, and Xavier Granier. 2020. On Learning the Best Balancing Strategy. In Eurographics 2020, Vol. 20. 1–4.Google Scholar
    21. Kosuke Nabata, Kei Iwasaki, and Yoshinori Dobashi. 2020. Resampling-aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths. ACM Trans. Graph. (SIGGRAPH 2020) 39, 2 (2020), 1–11.Google Scholar
    22. Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 135–143.Google ScholarCross Ref
    23. Anthony Pajot, Loic Barthe, Mathias Paulin, and Pierre Poulin. 2010. Representativity for robust and adaptive multiple importance sampling. IEEE transactions on visualization and computer graphics 17, 8 (2010), 1108–1121.Google Scholar
    24. Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. Probabilistic connections for bidirectional path tracing. Comput. Graph. Forum 34, 4 (2015), 75–86.Google ScholarDigital Library
    25. Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek, and Jaroslav Křivánek. 2020. Variance-Aware Path Guiding. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2020) 39, 4 (July 2020), 12 pages.Google Scholar
    26. Lukas Ruppert, Sebastian Herholz, and Hendrik PA Lensch. 2020. Robust fitting of parallax-aware mixtures for path guiding. ACM Transactions on Graphics (TOG) 39, 4 (2020), 15 pages.Google ScholarDigital Library
    27. Mateu Sbert and Víctor Elvira. 2022. Generalizing the balance heuristic estimator in multiple importance sampling. Entropy 24, 2 (2022), 191.Google ScholarCross Ref
    28. Mateu Sbert and Vlastimil Havran. 2017. Adaptive multiple importance sampling for general functions. The Visual Computer 33, 6 (2017), 845–855.Google ScholarDigital Library
    29. Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2016. Variance Analysis of Multi-sample and One-sample Multiple Importance Sampling. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 451–460.Google Scholar
    30. Mateu Sbert, Vlastimil Havran, and Laszlo Szirmay-Kalos. 2018a. Multiple importance sampling revisited: breaking the bounds. EURASIP Journal on Advances in Signal Processing 2018, 1 (2018), 1–15.Google ScholarCross Ref
    31. Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2019. Optimal Deterministic Mixture Sampling.. In Eurographics (Short Papers). 73–76.Google Scholar
    32. Mateu Sbert, Vlastimil Havran, László Szirmay-Kalos, and Víctor Elvira. 2018b. Multiple importance sampling characterization by weighted mean invariance. The Visual Computer 34, 6 (2018), 843–852.Google ScholarDigital Library
    33. Martin Šik and Jaroslav Křivánek. 2018. Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation. IEEE Transactions on Visualization and Computer Graphics 26, 4 (2018), 1821–1840.Google ScholarCross Ref
    34. Martin Šik and Jaroslav Křivánek. 2019. Implementing One-Click Caustics in Corona Renderer. (2019).Google Scholar
    35. Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. 2016. Robust light transport simulation via metropolised bidirectional estimators. ACM Trans. Graph. (TOG) 35, 6 (2016), 245.Google ScholarDigital Library
    36. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Stanford University PhD thesis.Google ScholarDigital Library
    37. Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145–167.Google Scholar
    38. Eric Veach and Leonidas J Guibas. 1995b. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In SIGGRAPH ’95. ACM, 419–428.Google Scholar
    39. Eric Veach and Leonidas J Guibas. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 65–76.Google ScholarDigital Library
    40. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. (Proceedings of SIGGRAPH 2014) 33, 4 (2014), 11 pages.Google Scholar
    41. Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph. Forum 34, 2 (2015), 667–681.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: