“Ecoclimates: climate-response modeling of vegetation” by Palubicki, Makowski, Gajda, Hädrich, Michels, et al. …

  • ©Wojtek Palubicki, Miłosz Makowski, Weronika Gajda, Torsten Hädrich, Dominik L. Michels, and Soren Pirk




    Ecoclimates: climate-response modeling of vegetation



    One of the greatest challenges to mankind is understanding the underlying principles of climate change. Over the last years, the role of forests in climate change has received increased attention. This is due to the observation that not only the atmosphere has a principal impact on vegetation growth but also that vegetation is contributing to local variations of weather resulting in diverse microclimates. The interconnection of plant ecosystems and weather is described and studied as ecoclimates. In this work we take steps towards simulating ecoclimates by modeling the feedback loops between vegetation, soil, and atmosphere. In contrast to existing methods that only describe the climate at a global scale, our model aims at simulating local variations of climate. Specifically, we model tree growth interactively in response to gradients of water, temperature and light. As a result, we are able to capture a range of ecoclimate phenomena that have not been modeled before, including geomorphic controls, forest edge effects, the Foehn effect and spatial vegetation patterning. To validate the plausibility of our method we conduct a comparative analysis to studies from ecology and climatology. Consequently, our method advances the state-of-the-art of generating highly realistic outdoor landscapes of vegetation.


    1. R. P. Allan, M. Barlow, M. P. Byrne, A. Cherchi, H. Douville, H. J. Fowler, T. Y. Gan, A. G. Pendergrass, D. Rosenfeld, A. L. S. Swann, L. J. Wilcox, and O. Zolina. 2020. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N.Y. Acad. Sci. (2020).Google Scholar
    2. M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10–34.Google Scholar
    3. O. Argudo, C. Andújar, A. Chica, E. Guérin, J. Digne, A. Peytavie, and E. Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer 33, 6 (2017), 1005–1015.Google ScholarDigital Library
    4. R. Bastiaansen, A. Doelman, M. B. Eppinga, and M. Rietkerk. 2020. The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation. Ecology Letters 23, 3 (2020), 414–429.Google ScholarCross Ref
    5. B. Beneš, N. Andrysco, and O. Št’ava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH’09). Eurographics Association, Goslar, DEU, 9–16.Google ScholarDigital Library
    6. E. Bertuzzo, F. Carrara, L. Mari, F. Altermatt, I. Rodriguez-Iturbe, and A. Rinaldo. 2016. Geomorphic controls on elevational gradients of species richness. 113, 7 (2016), 1737–1742.Google Scholar
    7. G. Bonan. 2015. Ecological Climatology: Concepts and Applications (3 ed.). Cambridge University Press.Google ScholarCross Ref
    8. A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin. 2008. Interactive Multiple Anisotropic Scattering in Clouds. In I3D (2008). 173–182.Google Scholar
    9. D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1–74:10 pages.Google ScholarDigital Library
    10. E. N. Broadbent, G. P. Asner, M. Keller, D. E. Knapp, P. J. C. Oliveira, and J. N. Silva. 2008. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation 141, 7 (2008), 1745 — 1757.Google ScholarCross Ref
    11. E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373–382.Google Scholar
    12. E. Ch’ng. 2011. Realistic Placement of Plants for Virtual Environments. IEEE Comput. Graph. Appl. 31, 4 (2011), 66–77.Google ScholarDigital Library
    13. G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 12 pages.Google ScholarDigital Library
    14. J. Delgado, N. Arroyo, J. R. Arevalo, and J. Fernández-Palacios. 2007. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landscape and Urban Planning (07 2007), 328–340.Google Scholar
    15. O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS ’02 (2002), 219–226.Google ScholarDigital Library
    16. O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275–286.Google Scholar
    17. P. Ecormier-Nocca, G. Cordonnier, P. Carrez, A.-M. Moigne, P. Memari, B. Benes, and M.-P. Cani. 2021. Authoring Consistent Landscapes with Flora and Fauna. ACM Trans. Graph. 40, 4, Article 105 (2021), 13 pages.Google ScholarDigital Library
    18. C. W. Ferreira Barbosa, Y. Dobashi, and T. Yamamoto. 2015. Adaptive Cloud Simulation Using Position Based Fluids. Comput. Animat. Virtual Worlds 26, 3–4 (2015), 367–375.Google Scholar
    19. J. Gain, H. Long, G. Cordonnier, and M.-P. Cani. 2017. EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems. Computer Graphics Forum 36, 2 (2017), 63–73.Google ScholarDigital Library
    20. P. Goswami and F. Neyret. 2017. Real-Time Landscape-Size Convective Clouds Simulation and Rendering. In Proceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations (VRIPHYS ’17). Eurographics Association, 1–8.Google Scholar
    21. T. Hädrich, D. T. Banuti, W. Pałubicki, S. Pirk, and D. L. Michels. 2021. Fire in Paradise: Mesoscale Simulation of Wildfires. ACM Trans. Graph. 40, 4, Article 163 (2021).Google ScholarDigital Library
    22. T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. CGF 36, 2 (2017), 49–61.Google ScholarDigital Library
    23. T. Hädrich, M. Makowski, W. Pałubicki, D. Banuti, S. Pirk, and D. L. Michels. 2020. Stormscapes: Simulating Cloud Dynamics in the Now. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) (2020).Google ScholarDigital Library
    24. M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. 2003. Simulation of Cloud Dynamics on Graphics Hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS ’03). Eurographics Association, 92–101.Google Scholar
    25. J. A. A. Herrera, T. Hädrich, W. Pałubicki, D. T. Banuti, S. Pirk, and D. L. Michels. 2021. Weatherscapes: Nowcasting Heat Transfer and Water Continuity. ACM Trans. Graph. 40, 6, Article 204 (2021), 19 pages.Google ScholarDigital Library
    26. R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. T. Prins, and H. de Kroon. 2001. Vegetation Pattern Formation in Semi-Arid Grazing Systems. Ecology 82, 1 (2001), 50–61.Google ScholarCross Ref
    27. G. L. Horn, H. G. Ouwersloot, J. Vilà-Guerau de Arellano, and M. Sikma. 2015. Cloud Shading Effects on Characteristic Boundary-Layer Length Scales. Boundary-Layer Meteorology 157, 2 (01 Nov 2015), 237–263.Google Scholar
    28. T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617–624.Google ScholarCross Ref
    29. M. Jaeger and J. Teng. 2003. Tree and plant volume imaging – An introductive study towards voxelized functional landscapes. PMA (2003).Google Scholar
    30. K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie. 2020. Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. (2020).Google Scholar
    31. E. Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, Boston, MA, 1–84.Google Scholar
    32. M. Kovenock and A. L. S. Swann. 2018. Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles 32, 10 (2018), 1437–1448.Google ScholarCross Ref
    33. P. K. Kundu, I. M. Cohen, and D. R. Dowling. 2012. Fluid Mechanics. Elsevier Science.Google Scholar
    34. B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69–80.Google Scholar
    35. B. Li, J. Kałużny, J. Klein, D. L. Michels, W. Pałubicki, B. Benes, and S. Pirk. 2021. Learning to Reconstruct Botanical Trees from Single Images. ACM Transaction on Graphics 40, 6, Article 231 (12 2021).Google ScholarDigital Library
    36. C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating Moving Trees from Video. ACM Trans. Graph. 30, 6, Article 127 (2011), 127:1–127:12 pages.Google ScholarDigital Library
    37. P. Liang, X. Wang, H. Sun, Y. Fan, Y. Wu, X. Lin, and J. Chang. 2019. Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Scientific Reports 9, 1 (2019), 1336.Google ScholarCross Ref
    38. B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (Jan. 1999), 56–65. Google ScholarDigital Library
    39. Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texturelobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.Google ScholarDigital Library
    40. S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120.Google ScholarDigital Library
    41. M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, and W. Pałubicki. 2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.Google ScholarDigital Library
    42. N. Maréchal, E. Guérin, E. Galin, S. Mérillou, and N. Mérillou. 2010. Heat Transfer Simulation for Modeling Realistic Winter Sceneries. CGF 29 (05 2010), 449 — 458.Google Scholar
    43. E. Meron. 2019. Vegetation pattern formation: The mechanisms behind the forms. Physics Today 72, 11 (2019), 30–36.Google ScholarCross Ref
    44. R. Miyazaki, S. Yoshida, T. Nishita, and Y. Dobashi. 2001. A Method for Modeling Clouds Based on Atmospheric Fluid Dynamics. In PG. IEEE Computer Society, USA, 363.Google Scholar
    45. R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397–410.Google Scholar
    46. B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).Google ScholarDigital Library
    47. B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Comp. Graph. Forum 30, 6 (2011), 1708–1718.Google ScholarCross Ref
    48. F. Neyret. 1997. Qualitative Simulation of Convective Cloud Formation and Evolution. In Computer Animation and Simulation ’97, D. Thalmann and M. van de Panne (Eds.). Springer Vienna, Vienna, 113–124.Google Scholar
    49. T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen. 2022. Procedural Urban Forestry. ACM Transaction on Graphics 41, 1 ((in press) 2022).Google ScholarDigital Library
    50. M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.Google Scholar
    51. P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.Google ScholarDigital Library
    52. D. Overby, Z. Melek, and J. Keyser. 2002. Interactive physically-based cloud simulation. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings. 469–470.Google Scholar
    53. W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.Google ScholarDigital Library
    54. S. Pirk, B. Benes, T. Ijiri, Y. Li, O. Deussen, B. Chen, and R. Měch. 2016. Modeling Plant Life in Computer Graphics. In ACM SIGGRAPH 2016 Courses. ACM, Article 18, 180 pages.Google Scholar
    55. S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (2017), 12 pages.Google ScholarDigital Library
    56. S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.Google ScholarDigital Library
    57. S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.Google ScholarDigital Library
    58. H. Pretzsch, R. Grote, B. Reineking, T. Rötzer, and S. Seifert. 2008. Models for Forest Ecosystem Management: A European Perspective. Annals of botany 101 (06 2008), 1065–87.Google Scholar
    59. R. M. Pringle and C. E. Tarnita. 2017. Spatial Self-Organization of Ecosystems: Integrating Multiple Mechanisms of Regular-Pattern Formation. Annual Review of Entomology 62, 1 (2017), 359–377.Google ScholarCross Ref
    60. P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247–253.Google ScholarDigital Library
    61. L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-Based Plant Modeling. ACM Trans. Graph. 25, 3 (2006), 599–604.Google ScholarDigital Library
    62. M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel. 2004. Self-Organized Patchiness and Catastrophic Shifts in Ecosystems. Science 305, 5692 (2004), 1926–1929.Google Scholar
    63. M. Rietkerk, F. van den Bosch, and J. van de Koppel. 1997. Site-Specific Properties and Irreversible Vegetation Changes in Semi-Arid Grazing Systems. Oikos 80, 2 (1997), 241–252.Google ScholarCross Ref
    64. L. Ringham, A. Owens, M. Cieslak, L. D. Harder, and P. Prusinkiewicz. 2021. Modeling Flower Pigmentation Patterns. ACM Trans. Graph. 40, 6, Article 233 (2021), 14 pages.Google ScholarDigital Library
    65. H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and Dominik L. Michels. 2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS.Google Scholar
    66. J. Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121–128.Google Scholar
    67. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. CGF 33, 6 (2014), 118–131.Google ScholarDigital Library
    68. P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages.Google ScholarDigital Library
    69. U. Vimont, J. Gain, M. Lastic, G. Cordonnier, B. Abiodun, and M.-C. Cani. 2020. Interactive Meso-scale Simulation of Skyscapes. Eurographics (2020).Google Scholar
    70. H. Y. Wang, M. Z. Kang, J. Hua, and X. J. Wang. 2013. Modeling Plant Plasticity from a Biophysical Model: Biomechanics. In Proceedings of the 12th ACM SIGGRAPH Intl. Conf. on VRCAI. ACM, 115–122.Google Scholar
    71. A. Webanck, Y. Cortial, E. Guérin, and E. Galin. 2018. Procedural Cloudscapes. CGF 37, 2 (2018), 431–442.Google ScholarCross Ref
    72. J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2 (2009), 541–550.Google ScholarCross Ref
    73. H. Xiao, L. K. Berg, and M. Huang. 2018. The Impact of Surface Heterogeneities and Land-Atmosphere Interactions on Shallow Clouds Over ARM SGP Site. Journal of Advances in Modeling Earth Systems 10, 6 (2018), 1220–1244.Google ScholarCross Ref
    74. H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. 26, 4 (2007), Article 19, 13 pages.Google Scholar
    75. F. Zellweger, P. De Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, M. Bernhardt-Römermann, L. Baeten, R. Hédl, I. Berki, J. Brunet, H. Van Calster, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M. Kopecký, F. Máliš, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, A. Ortmann-Ajkai, P. Petřík, R. Pielech, K. Reczyńska, W. Schmidt, T. Standovár, K. Świerkosz, B. Teleki, O. Vild, M. Wulf, and D. Coomes. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368, 6492 (2020), 772–775.Google Scholar
    76. B. Zhang and D. L. DeAngelis. 2020. An overview of agent-based models in plant biology and ecology. Annals of Botany 126, 4 (03 2020), 539–557.Google ScholarCross Ref
    77. Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: