“Dynamic simulation of autonomous legged locomotion” by McKenna and Zeltzer

  • ©Michael McKenna and David Zeltzer




    Dynamic simulation of autonomous legged locomotion

Session/Category Title: Dynamics




    Accurate simulation of Newtonian mechanics is essential for simulating realistic motion of joined figures. Dynamic simulation requires, however, a large amount of computation when compared to kinematic methods, and the control of dynamic figures can be quite complex. We have implemented an efficient forward dynamic simulation algorithm for articulated figures which has a computational complexity linear in the number of joints. In addition, we present a strategy for the coordination of the locomotion of a six-legged figure – a simulated insect – which has two main components: a gait controller which sequences stepping, and motor programs which control motions of the figure by the application of forces. The simulation is capable of generating gait patterns and walking phenomena observed in nature, and our simulated insect can negotiate planar and uneven terrain in a realistic manner. The motor program techniques should be generally applicable to other control problems.


    1. Kugler, P, N., J. A. S. Kelso and M. T. Turvey. On the Concept of Coordinative Structures as Dissipative Structures: I. Theoretical Line. Tutorials in Motor Behavior. Amsterdam, North-Holland (1980).
    2. Featherstone, R. The Calculation of Robot Dynamics Using Articulated-Body Inertias. Robotics Research 2,1 (1983), 13-29.
    3. Featherstone, R. Robot Dynamics Algorithms. Kluwer Academic Publishers (1987).
    4. Sehrtder, P. The Virtual Erector Set, Master’s Thesis, Massachusetts Institute of Teclmology (1990).
    5. Barzel, R. and A. H. Barr. Controlling Rigid Bodies with Dynamic Constraints. ACM SIGGRAPH ’88 Course Notes #27: Developments in Physically-Based Modeling, Section E (1988).
    6. Isaacs, P. M. and M. F. Cohen. Controlling Dynamic Simulation with Kinematic Constraints, Behavior Functions and Inverse Dynamics. Computer Graphics 21,4 (July 1987), 215-224.
    7. Barzel, R. and A. H. Bart. A Modeling System Based on Dynamic Constraints. Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1988) In Computer Graphics 22,4 (August 1988), 179-188.
    8. Sehrtder, P. and D. Zeltzer. The Virtual Erector Set: Dynamic Simulation with Linear Reeursive Constraint Propagation. Proceedings of the 1990 Symposium on Interactive 3D Graphics (Snowbird, Utah, March 1990). In Computer Graphics 24, 2 (1990), 23-31.
    9. Witkin, A. and M. Kass. Spacetlme Constraints. Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1988) In Computer Graphics 22,4 (August 1988), 159-168.
    10. Walker, M. W. and D. E. Orin. Efficient dynamic computer simulation of robotic mechanisms. Proceedings of Joint Automatic Contr. Conf. (Charlottesville, VA, 1981).
    11. Wilhelms, J. Using Dynamic Analysis for Realistic Animation of Articulated Bodies. IEEE Computer Graphics and Applications 7,6 (June 1997), 12-27.
    12. Armstrong, W. W. Reeursive solution to the equations of motion of an n-link manipulator. Proceedings of 5th World Congress Theory Mach. Mechanisms (Montreal, 1979) Volume 2, 1343-1346.
    13. Armstrong, W. W., M, Green and R. Lake. Near-Real- Time Control of Human Figure Models. IEEE Computer Graphics and Applications 7,6 (June 1987), 52-61.
    14. Lathrop, R. H. Constrained (Closed-Loop) Robot Simulation By Local Constraint Propagation. Proceedings of 1986 IEEE Int. Conf. on Robotics and Automation (San Francisco, 1986) Volume 2, 689-694.
    15. Zeltzer, D., S. Pieper and D. Sturman. Art Integrated Graphical Simulation Platform. Proceedings of Graphics Interface 89 (London, Ontario, 1989), 266-274.
    16. Zeltzer, D. Towards an Integrated View of 3-D Computer Animation. The Visual Computer 1,4 (December 1985), 249-259.
    17. Muybridge, E. The Human Figure in Motion. New York, Dover (1955).
    18. Muybridge, E. Animals in Motion. New York, Dover (1957).
    19. Hildebrand, M. Analysis of Tetrapod Gaits: General Considerations and Symmetrical Gaits. Neural Control of Locomotion. New York, Plenum Press (1976).
    20. Gallistel, C. R. The Organization of Action: A New Synthesis. Hillsdale, New Jersey, Lawrence Erlbaum Associates (1980).
    21. Gelfand, I. M., V. S. Gurfinkel, M. L. Tsetlin and M. L. Shik. Models of the Structural-Functional Organization of Certain Biological Systems. Cambridge, M1T Press (1971).
    22. GriUner, S. Locomotion in Vertebrates: Central Mechanisms and Reflex Interaction. Physiological Reviews 55,2 (April 1975),
    23. Pearson, K. The Control of Walking. Scientific American 235,6 (December 1976), 72-86.
    24. Bizzi, E. Central and peripheral mechanisms in motor control. Tutorials in Motor Behavior. North-Holland Publishing Co. (1980).
    25. Robertson, M. A, and L. E. Halverson. The Development of Locomotor Coordination: Longitudinal Change and Invariance. Journal of Motor Behavior 20,3 (1988), 197- 241.
    26. Beer, R. D., L. S. Sterling and H. J. Chiel. Periplaneta Computatrix: The Artificial Insect Project. Case Western Reserve University. Technical Report, TR 89-102. (January 1989).
    27. Chiel, H. J. and R. D. Beer. A lesion study of a heterogeneous artificial neural network for hexapod locomotion. Case Western Reserve University. Technical Report TR-108. (February 1988).
    28. McGhee, R. B. Robot Locomotion. Neural Control of Locomotion. New York, Plenum Press (1976).
    29. Raibert, M. H. and I. E. Sutherland. Machines That Walk. Scientific American 248,1 (january 1983), 44-53.
    30. Donner, M. D. Control of Walking: Local control and real time systen~. Phi) Thesis, Carnegie-Mellon University. (1984).
    31. Raibert, M. H. Legged Robots That Balance. Cambridge, MA, MIT Press (1986).
    32. Song, S. and K. J. Waldron. Machines That Walk: The Adaptive Suspension Vehicle. Cambridge, MA, MIT Press (1989).
    33. Zeltzer, D. Motor Control Techniques for Figure Animation. IEEE Computer Graphics and Applications 2,9 (November 1982), 53-59.
    34. Girard, M. and A. A. Maciejewski. Computational Modeling for the Computer AnJmatiort of Legged Figures. Computer Graphics 19,3 (July 1985), 263-270.
    35. Sims, K. Locomotion of Jointed Figures over Complex Terrain, M.S.V.S Thesis,Massachusetts Institute of Technology. (June 1987).
    36. Bruderlin, A. and T. W. Calvert. Goal-Directed, Dynamic Animation of Human Walking. Proceedings of SIGGRAPH ’89 (Boston, Massachusetts, July 1989) In Computer Graphics 23,3 (July 1989), 233-242.
    37. Ball, R. S. A treatise on the theory of screws. London, Cambridge Univ. Press (1900).
    38. McKerma, M. A. A Dynamic Model of Locomotion for Computer Animation. Master’s Thesis, Massachusetts Institute of Technology. (1990).
    39. Forsythe, G. E., M. A. Malcolm and C. B. Moler. Computer Methods for Mathematical Computations. New Jersey, Prentice-Hall, Inc. (1977).
    40. Moore, M. and J. Wilhelms. Collision Detection and Response for Computer Animation. Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1988) in Computer Graphics 22,4 (August 1988), 289-288.
    41. Wilson, D. M. Insect Walking. Annual Review of Entomology 11 (1966), 162-169.
    42. Pearson, K. G. and R. Franklin. Characteristics of Leg Movements and Patterns of Coordination in Locusts Walking on Rough Terrain. The International Journal of Robotics Research 3,2 (1984), 101-112.
    43. McMahon, T. A. Muscles, Reflexes, and Locomotion. Princeton University Press (1984).
    44. Bizzi, E., W. Chapple and N. Hogan. Mechanical Properties of Muscle: Implications for Motor Control. Trends in Neuroscience (November 1982).
    45. Hogan, N. The Mechanics of Multi-Joint Posture and Movement Control. Biological Cybernetics 52 (1985), 315-331.
    46. Wigglesworth, V. B. The Principles of Insect Physiology. London, Chapman and Hall.
    47. Hughes, G. M. and P. J. Mill. Locomotion: Terrestrial. The Physiology of lnsecta. New York and London, Academic Press (1974).
    48. McKenna, M., S. Pieper and D. Zeltzer. Control of Virtual Actor: The Roach. Proceedings of 1990 Symposium on Interactive 3D Graphics (Snowbird, Utah, 1990) In Computer Graphics 24,2 (1990), 165-174.

ACM Digital Library Publication:

Overview Page: