“Dynamic kelvinlets: secondary motions based on fundamental solutions of elastodynamics” by Goes and James

  • ©Fernando de Goes and Doug L. James



Entry Number: 81


    Dynamic kelvinlets: secondary motions based on fundamental solutions of elastodynamics

Session/Category Title: That's Elastic




    We introduce Dynamic Kelvinlets, a new analytical technique for real-time physically based animation of virtual elastic materials. Our formulation is based on the dynamic response to time-varying force distributions applied to an infinite elastic medium. The resulting displacements provide the plausibility of volumetric elasticity, the dynamics of compressive and shear waves, and the interactivity of closed-form expressions. Our approach builds upon the work of de Goes and James [2017] by presenting an extension of the regularized Kelvinlet solutions from elastostatics to the elastodynamic regime. To finely control our elastic deformations, we also describe the construction of compound solutions that resolve pointwise and keyframe constraints. We demonstrate the versatility and efficiency of our method with a series of examples in a production grade implementation.


    1. K. Aki and P.G. Richards. 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman, San Francisco I (1980).Google Scholar
    2. S. S. An, T. Kim, and D. L. James. 2008. Optimizing cubature for efficient integration of subspace deformations. In ACM Trans. Graph., Vol. 27. ACM, 165. Google ScholarDigital Library
    3. A. Angelidis and K. Singh. 2007. Kinodynamic Skinning Using Volume-preserving Deformations. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Computer Animation. 129–140. Google ScholarDigital Library
    4. Autodesk. 2016. Maya User Guide. (2016). https://autodesk.com/maya.Google Scholar
    5. R. Barzel. 1997. Faking dynamics of ropes and springs. IEEE Computer Graphics and Applications 17, 3 (1997), 31–39. Google ScholarDigital Library
    6. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (2014). Google ScholarDigital Library
    7. J. A. Canabal, D. Miraut, N. Thürey, T. Kim, J. Portilla, and M. A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans. on Graph. 35, 6 (2016). Google ScholarDigital Library
    8. M. G. Choi and H.-S. Ko. 2005. Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation. IEEE Trans. on Visualization and Computer Graphics 11, 1 (2005), 91–101. Google ScholarDigital Library
    9. R. Cortez. 2001. The Method of Regularized Stokeslets. SIAM J. on Scientific Computing 23, 4 (2001), 1204–1225. Google ScholarDigital Library
    10. R. Cortez, L. Fauci, and A. Medovikov. 2005. The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming. Physics of Fluids 17 (2005).Google Scholar
    11. F. de Goes and D. L. James. 2017. Regularized Kelvinlets: Sculpting Brushes Based on Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40 (2017). Google ScholarDigital Library
    12. J. Dominguez. 1993. Boundary Elements in dynamics. WIT Press.Google Scholar
    13. F. Hahn, S. Martin, B. Thomaszewski, R. Sumner, S. Coros, and M. Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4 (2012). Google ScholarDigital Library
    14. J. Huang, Y. Tong, K. Zhou, H. Bao, and M. Desbrun. 2011. Interactive Shape Interpolation Through Controllable Dynamic Deformation. IEEE Trans. on Visualization and Computer Graphics 17, 7 (2011), 983–992. Google ScholarDigital Library
    15. D. L. James and D. K. Pai. 2002. DyRT: dynamic response textures for real time deformation simulation with graphics hardware. In ACM Trans. Graph., Vol. 21. ACM, 582–585. Google ScholarDigital Library
    16. S. Jeschke and C. Wojtan. 2015. Water wave animation via wavefront parameter interpolation. ACM Trans. Graph. 34, 3 (2015), 27. Google ScholarDigital Library
    17. S. Jeschke and C. Wojtan. 2017. Water wave packets. ACM Trans. Graph. 36, 4 (2017), 103. Google ScholarDigital Library
    18. M. Kass and J. Anderson. 2008. Animating oscillatory motion with overlap: wiggly splines. In ACM Trans. Graph., Vol. 27. ACM, 28. Google ScholarDigital Library
    19. M. Kass and G. Miller. 1990. Rapid, Stable Fluid Dynamics for Computer Graphics. SIGGRAPH 24, 4 (1990), 49–57. Google ScholarDigital Library
    20. E. Kausel. 2006. Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press.Google Scholar
    21. T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6, Article 214 (2013). Google ScholarDigital Library
    22. M. Müller and N. Chentanez. 2011. Solid Simulation with Oriented Particles. ACM Trans. Graph. 30, 4, Article 92 (2011). Google ScholarDigital Library
    23. M. Müller and M. H. Gross. 2004. Interactive Virtual Materials. In Graphics Interface 2004. 239–246. Google ScholarDigital Library
    24. M. Müller, B. Heidelberger, M. Teschner, and M. Gross. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3 (2005), 471–478. Google ScholarDigital Library
    25. A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. 2006. Physically based deformable models in computer graphics. In Computer graphics forum, Vol. 25. 809–836.Google Scholar
    26. G. Nielson, H. Hagen, and H. Müller. 1997. Scientific Visualization. IEEE Computer Society.Google Scholar
    27. M. Pauly, D. K. Pai, and L. J. Guibas. 2004. Quasi-rigid Objects in Contact. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Computer Animation. Eurographics Association, 109–119. Google ScholarDigital Library
    28. A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (1989), 207–214. Google ScholarDigital Library
    29. J. Reinders. 2007. Intel Threading Building Blocks. O’Reilly & Associates, Inc. Google ScholarDigital Library
    30. C. Schulz, C. von Tycowicz, H.-P. Seidel, and K. Hildebrandt. 2014. Animating Deformable Objects Using Sparse Spacetime Constraints. ACM Trans. Graph. 33, 4, Article 109 (2014). Google ScholarDigital Library
    31. C. Shen, T. Hahn, B. Parker, and S. Shen. 2015. Animation Recipes: Turning an Animator’s Trick into an Automatic Animation System. In ACM SIGGRAPH Talks. ACM, Article 29. Google ScholarDigital Library
    32. Side Effects. 2018. Houdini Engine. (2018). http://www.sidefx.com.Google Scholar
    33. G. G. Stokes. 1849. On the dynamical theory of diffraction. Trans. Camb. Phil. Soc. 9 (1849), 1–62.Google Scholar
    34. J. Tessendorf. 2001. Simulating ocean water. Simulating nature: realistic and interactive techniques. SIGGRAPH Courses 1, 2 (2001), 5.Google Scholar
    35. W. von Funck, H. Theisel, and H. P. Seidel. 2006. Vector field based shape deformations. ACM Trans. on Graph. 25, 3 (2006), 1118–1125. Google ScholarDigital Library
    36. W. von Funck, H. Theisel, and H. P. Seidel. 2007. Elastic Secondary Deformations by Vector Field Integration. In Proc. of the Fifth Eurographics Symp. on Geometry Processing. 99–108. Google ScholarDigital Library
    37. C. Yuksel, D. H. House, and J. Keyser. 2007. Wave particles. In ACM Trans. Graph., Vol. 26. ACM, 99. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: