“Dynamic hair manipulation in images and videos” by Chai, Wang, Weng, Jin and Zhou

  • ©

Conference:


Type(s):


Title:

    Dynamic hair manipulation in images and videos

Session/Category Title:   Image-Based Reconstruction


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    This paper presents a single-view hair modeling technique for generating visually and physically plausible 3D hair models with modest user interaction. By solving an unambiguous 3D vector field explicitly from the image and adopting an iterative hair generation algorithm, we can create hair models that not only visually match the original input very well but also possess physical plausibility (e.g., having strand roots fixed on the scalp and preserving the length and continuity of real strands in the image as much as possible). The latter property enables us to manipulate hair in many new ways that were previously very difficult with a single image, such as dynamic simulation or interactive hair shape editing. We further extend the modeling approach to handle simple video input, and generate dynamic 3D hair models. This allows users to manipulate hair in a video or transfer styles from images to videos.

References:


    1. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3, 24:1–11. Google ScholarDigital Library
    2. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., and Gross, M. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4, 117:1–10. Google ScholarDigital Library
    3. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P. N., and Nayar, S. K. 2008. Face Swapping: Automatically replacing faces in photographs. ACM Trans. Graph. 27, 39:1–8. Google ScholarDigital Library
    4. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH ’99, 187–194. Google ScholarDigital Library
    5. Bonneel, N., Paris, S., Panne, M. V. D., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. Computer Graphics Forum 28, 1171–1180. Google ScholarDigital Library
    6. Chai, M., Wang, L., Yu, Y., Weng, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1–8. Google ScholarDigital Library
    7. Dale, K., Sunkavalli, K., Johnson, M. K., Vlasic, D., Matusik, W., and Pfister, H. 2011. Video face replacement. ACM Trans. Graph. 30, 6, 130:1–10. Google ScholarDigital Library
    8. Daviet, G., Bertails-Descoubes, F., and Boissieux, L. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, 139:1–12. Google ScholarDigital Library
    9. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In Proc. EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, 31–36. Google ScholarDigital Library
    10. Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1–9. Google ScholarDigital Library
    11. Hoiem, D., Efros, A. A., and Hebert, M. 2005. Automatic photo pop-up. ACM Trans. Graph. 24, 3, 577–584. Google ScholarDigital Library
    12. Jain, A., Thormählen, T., Seidel, H.-P., and Theobalt, C. 2010. MovieReshape: Tracking and reshaping of humans in videos. ACM Trans. Graph. 29, 6, 148:1–10. Google ScholarDigital Library
    13. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1–9. Google ScholarDigital Library
    14. Karp, R. M. 1972. Reducibility among combinatorial problems. Complexity of Computer Computations, 85–103.Google Scholar
    15. Karsch, K., Hedau, V., Forsyth, D., and Hoiem, D. 2011. Rendering synthetic oobject into legacy photographs. ACM Trans. Graph. 30, 6, 157:1–12. Google ScholarDigital Library
    16. Lang, M., Wang, O., Aydin, T., Smolic, A., and Gross, M. 2012. Practical temporal consistency for image-based graphics applications. ACM Trans. Graph. 31, 4, 34:1–8. Google ScholarDigital Library
    17. Liu, J., Sun, J., and Shum, H.-Y. 2009. Paint selection. ACM Trans. Graph. 28, 3, 69:1–7. Google ScholarDigital Library
    18. Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., and Rusinkiewicz, S. 2012. Multi-view hair capture using orientation fields. In Proc. CVPR 2012, 1490–1497. Google ScholarDigital Library
    19. Marschner, S., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780–791. Google ScholarDigital Library
    20. Oh, B. M., Chen, M., Dorsey, J., and Durand, F. 2001. Image-based modeling and photo editing. In Proc. SIGGRAPH ’01, 433–442. Google ScholarDigital Library
    21. Paris, S., Briceño, H., and Sillion, F. 2004. Capture of hair geometry from multiple images. ACM Trans. Graph. 23, 3, 712–719. Google ScholarDigital Library
    22. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1–9. Google ScholarDigital Library
    23. Perlin, K. 2002. Improving noise. In Proc. SIGGRAPH ’02, 681–682. Google ScholarDigital Library
    24. Piuze, E., Kry, P. G., and Siddiqi, K. 2011. Generalized helicoids for modeling hair geometry. Computer Graphics Forum 30, 2, 247–256.Google ScholarCross Ref
    25. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64:1–11. Google ScholarDigital Library
    26. Tan, P., Fang, T., Xiao, J., Zhao, P., and Quan, L. 2008. Single image tree modeling. ACM Trans. Graph. 27, 5, 108:1–7. Google ScholarDigital Library
    27. Vlasic, D., Brand, M., Pfister, H., and Popovic, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24, 3, 426–433. Google ScholarDigital Library
    28. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1–9. Google ScholarDigital Library
    29. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: styling, simulation, and rendering. IEEE Transactions on Visualization and Computer Graphics 13, 2, 213–234. Google ScholarDigital Library
    30. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3, 816–820. Google ScholarDigital Library
    31. Yamaguchi, T., Wilburn, B., and Ofek, E. 2009. Video-based modeling of dynamic hair. In the 3rd Pacific Rim Symposium on Advances in Image and Video Technology, 585–596. Google ScholarDigital Library
    32. Yang, F., Wang, J., Shechtman, E., Bourdev, L., and Metaxas, D. 2011. Expression flow for 3D-aware face component transfer. ACM Trans. Graph. 30, 4, 60:1–10. Google ScholarDigital Library
    33. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5. Google ScholarDigital Library
    34. Zhang, Q., Tong, J., Wang, H., Pan, Z., and Yang, R. 2012. Simulation guided hair dynamics modeling from video. Computer Graphics Forum 31, 7, 2003–2010. Google ScholarDigital Library
    35. Zheng, Y., Chen, X., Cheng, M.-M., Zhou, K., Hu, S.-M., and Mitra, N. J. 2012. Interactive images: Cuboid proxies for smart image manipulation. ACM Trans. Graph. 31, 4, 99:1–11. Google ScholarDigital Library
    36. Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126:1–10. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: