“Dynamic element textures” by Ma, Wei, Lefebvre and Tong

  • ©Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin Tong




    Dynamic element textures


Session Title: Data-Driven Animation



    Many natural phenomena consist of geometric elements with dynamic motions characterized by small scale repetitions over large scale structures, such as particles, herds, threads, and sheets. Due to their ubiquity, controlling the appearance and behavior of such phenomena is important for a variety of graphics applications. However, such control is often challenging; the repetitive elements are often too numerous for manual edit, while their overall structures are often too versatile for fully automatic computation.We propose a method that facilitates easy and intuitive controls at both scales: high-level structures through spatial-temporal output constraints (e.g. overall shape and motion of the output domain), and low-level details through small input exemplars (e.g. element arrangements and movements). These controls are suitable for manual specification, while the corresponding geometric and dynamic repetitions are suitable for automatic computation. Our system takes such user controls as inputs, and generates as outputs the corresponding repetitions satisfying the controls.Our method, which we call dynamic element textures, aims to produce such controllable repetitions through a combination of constrained optimization (satisfying controls) and data driven computation (synthesizing details). We use spatial-temporal samples as the core representation for dynamic geometric elements. We propose analysis algorithms for decomposing small scale repetitions from large scale themes, as well as synthesis algorithms for generating outputs satisfying user controls. Our method is general, producing a range of artistic effects that previously required disparate and specialized techniques.


    1. Ahuja, N., and Todorovic, S. 2007. Extracting texels in 2.1D natural textures. ICCV 0, 1–8.Google Scholar
    2. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In SIGGRAPH ’09, 53:1–9. Google ScholarDigital Library
    3. Barla, P., Breslav, S., Thollot, J., Sillion, F., and Markosian, L. 2006. Stroke pattern analysis and synthesis. In Computer Graphics Forum (Proc. of Eurographics 2006), vol. 25.Google Scholar
    4. Cheng, M.-M., Zhang, F.-L., Mitra, N. J., Huang, X., and Hu, S.-M. 2010. Repfinder: finding approximately repeated scene elements for image editing. In SIGGRAPH ’10, 83:1–8. Google ScholarDigital Library
    5. Cho, J. H., Xenakis, A., Gronsky, S., and Shah, A. 2007. Course 6: Anyone can cook: inside ratatouille’s kitchen. In SIGGRAPH 2007 Courses.Google Scholar
    6. Dischler, J., Maritaud, K., Lévy, B., and Ghazanfarpour, D. 2002. Texture particles. In EUROGRAPH ’02, vol. 21, 401–410.Google Scholar
    7. Dong, Y., Lefebvre, S., Tong, X., and Drettakis, G. 2008.Google Scholar
    8. Lazy solid texture synthesis. In Computer Graphics Forum (EGSR).Google Scholar
    9. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In ICCV ’99, 1033–. Google ScholarDigital Library
    10. Guy, S. J., van den Berg, J., Liu, W., Rynson, L., Lin, M. C., and Manocha, D. 2012. A statistical similarity measure for aggregate crowd dynamics. In SIGGRAPH Asia ’12, 190:1–190:11. Google ScholarDigital Library
    11. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. 2001. Image analogies. In SIGGRAPH ’01, 327–340. Google ScholarDigital Library
    12. Ijiri, T., Mech, R., Igarashi, T., and Miller, G. 2008. An example-based procedural system for element arrangement. EUROGRAPH ’08 27, 2, 429–436.Google Scholar
    13. James, D. L., Twigg, C. D., Cove, A., and Wang, R. Y. 2007. Mesh ensemble motion graphs: Data-driven mesh animation with constraints. ACM Trans. Graph. 26. Google ScholarDigital Library
    14. Ju, E., Choi, M. G., Park, M., Lee, J., Lee, K. H., and Takahashi, S. 2010. Morphable crowds. In SIGGRAPH Asia ’10, 140:1–140:10. Google ScholarDigital Library
    15. Kavan, L., Gerszewski, D., Bargteil, A., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. In SIGGRAPH ’11, 93:1–10. Google ScholarDigital Library
    16. Kazi, R. H., Igarashi, T., Zhao, S., and Davis, R. 2012. Vignette: Interactive texture design and manipulation with freeform gestures for pen-and-ink illustraion. In CHI’12. Google ScholarDigital Library
    17. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In SIGGRAPH ’02, 473–482. Google ScholarDigital Library
    18. Kuhn, H. 1955. The hungarian method for the assignment problem. Naval research logistics quarterly 2, 1-2, 83–97.Google Scholar
    19. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. In SIGGRAPH ’03, 277–286. Google ScholarDigital Library
    20. Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. 2005. Texture optimization for example-based synthesis. In SIGGRAPH ’05, 795–802. Google ScholarDigital Library
    21. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., and Lin, M. 2007. Texturing fluids. IEEE Trans. Visualization and Computer Graphics 13, 5, 939–952. Google ScholarDigital Library
    22. Kwon, T., Lee, K. H., Lee, J., and Takahashi, S. 2008. Group motion editing. In SIGGRAPH ’08, 80:1–8. Google ScholarDigital Library
    23. Lefebvre, S., and Hoppe, H. 2005. Parallel controllable texture synthesis. In SIGGRAPH ’05, 777–786. Google ScholarDigital Library
    24. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. In SIGGRAPH ’06, 541–548. Google ScholarDigital Library
    25. Li, Y., Christie, M., Siret, O., Kulpa, R., and Pettré, J. 2012. Cloning crowd motion. In SCA ’12. Google ScholarDigital Library
    26. Lu, J., Georghiades, A. S., Glaser, A., Wu, H., Wei, L.-Y., Guo, B., Dorsey, J., and Rushmeier, H. 2007. Context-aware textures. ACM Trans. Graph. 26, 1, 3. Google ScholarDigital Library
    27. Ma, C., Wei, L.-Y., and Tong, X. 2011. Discrete element textures. In SIGGRAPH ’11, 62:1–10. Google ScholarDigital Library
    28. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. In SIGGRAPH ’11, 92:1–92:10. Google ScholarDigital Library
    29. Narain, R., Golas, A., Curtis, S., and Lin, M. 2009. Aggregate dynamics for dense crowd simulation. In SIGGRAPH Asia ’09, 122:1–8. Google ScholarDigital Library
    30. Narain, R., Golas, A., and Lin, M. C. 2010. Free-flowing granular materials with two-way solid coupling. In SIGGRAPH Asia ’10, 173:1–173:10. Google ScholarDigital Library
    31. Paget, R., and Longstaff, I. D. 1995. Texture synthesis via a nonparametric markov random field. In Proceedings of DICTA-95, Digital Image Computing: Techniques and Applications, vol. 1, 547–552.Google Scholar
    32. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In SIGGRAPH ’00, 209–217. Google ScholarDigital Library
    33. Pullen, K., and Bregler, C. 2002. Motion capture assisted animation: texturing and synthesis. In SIGGRAPH ’02, 501–508. Google ScholarDigital Library
    34. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In SIGGRAPH ’00, 489–498. Google ScholarDigital Library
    35. Sewall, J., Wilkie, D., and Ling, M. C. 2011. Interactive hybrid simulation of large-scale traffic. In SIGGRAPH Asia ’11, 135:1–12. Google ScholarDigital Library
    36. Soares, O., Raja, S., Hurrey, R., and Iben, H. 2012. Curls gone wild: hair simulation in brave. In SIGGRAPH ’12 Talks, 22:1–22:1. Google ScholarDigital Library
    37. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In SIGGRAPH ’93, 369–376. Google ScholarDigital Library
    38. Szummer, M., and Picard, R. W. 1996. Temporal texture modeling. In IEEE Intl. Conf. Image Processing, vol. 3, 823–826.Google Scholar
    39. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. SCA ’06, 7–12. Google ScholarDigital Library
    40. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., and Shum, H.-Y. 2002. Synthesis of bidirectional texture functions on arbitrary surfaces. In SIGGRAPH ’02, 665–672. Google ScholarDigital Library
    41. Turk, G. 2001. Texture synthesis on surfaces. In SIGGRAPH ’01, 347–354. Google ScholarDigital Library
    42. Wang, J., Tong, X., Lin, S., Pan, M., Wang, C., Bao, H., Guo, B., and Shum, H.-Y. 2006. Appearance manifolds for modeling time-variant appearance of materials. In SIGGRAPH ’06, 754–761. Google ScholarDigital Library
    43. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. In SIGGRAPH ’09, 56:1–9. Google ScholarDigital Library
    44. Wang, H., Hecht, F., Ramamoorthi, R., and O’Brien, J. 2010. Example-based wrinkle synthesis for clothing animation. In SIGGRAPH ’10, 107:1–8. Google ScholarDigital Library
    45. Wang, H., Ramamoorthi, R., and O’Brien, J. F. 2011. Data-driven elastic models for cloth: Modeling and measurement. In SIGGRAPH ’11, 71:1–11. Google ScholarDigital Library
    46. Wei, L.-Y., and Levoy, M. 2000. Fast texture synthesis using tree-structured vector quantization. In SIGGRAPH ’00, 479–488. Google ScholarDigital Library
    47. Wei, L.-Y., Han, J., Zhou, K., Bao, H., Guo, B., and Shum, H.-Y. 2008. Inverse texture synthesis. In SIGGRAPH ’08, 52:1–9. Google ScholarDigital Library
    48. Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics ’09 State of the Art Report, 93–117.Google Scholar
    49. Xu, X., Wan, L., Liu, X., Wong, T.-T., Wang, L., and Leung, C.-S. 2008. Animating animal motion from still. In SIGGRAPH Asia ’08, 117:1–117:8. Google ScholarDigital Library
    50. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In SIGGRAPH ’05, 965–972. Google ScholarDigital Library

ACM Digital Library Publication: