“Display adaptive tone mapping” by Mantiuk, Daly and Kerofsky

  • ©Rafal K. Mantiuk, Scott Daly, and Louis Kerofsky

Conference:


Type:


Title:

    Display adaptive tone mapping

Presenter(s)/Author(s):



Abstract:


    We propose a tone mapping operator that can minimize visible contrast distortions for a range of output devices, ranging from e-paper to HDR displays. The operator weights contrast distortions according to their visibility predicted by the model of the human visual system. The distortions are minimized given a display model that enforces constraints on the solution. We show that the problem can be solved very efficiently by employing higher order image statistics and quadratic programming. Our tone mapping technique can adjust image or video content for optimum contrast visibility taking into account ambient illumination and display characteristics. We discuss the differences between our method and previous approaches to the tone mapping problem.

References:


    1. Adams, A. 1981. The Print, The Ansel Adams Photography Series 3. New York Graphic Society.Google Scholar
    2. Akyüz, A. O., Fleming, R., Riecke, B. E., Reinhard, E., and Bülthoff, H. H. 2007. Do HDR displays support LDR content?: a psychophysical evaluation. ACM Trans. Graph. 26, 3, 38. Google ScholarDigital Library
    3. Bae, S., Paris, S., and Durand, F. 2006. Two-scale tone management for photographic look. ACM Trans. Graph. 25, 3, 637–645. Google ScholarDigital Library
    4. Bodrogi, P., and Tarczali, T. 2002. Investigation of colour memory. In Colour Image Science, L. MacDonald and M. R. Luo, Eds. John Wiley & Sons, ch. 2, 23–48.Google Scholar
    5. Burt, P., and Adelson, E. 1983. The laplacian pyramid as a compact image code. Communications, IEEE Transactions on {legacy, pre-1988} 31, 4, 532–540.Google Scholar
    6. Cadik, M., Wimmer, M., Neumann, L., and Artusi, A. 2006. Image attributes and quality for evaluation of tone mapping operators. In Proc. of the 14th Pacific Conf. on Comp. Graph. and Applications, 35–44.Google Scholar
    7. Daly, S. 1993. The Visible Differences Predictor: An algorithm for the assessment of image fidelity. In Digital Image and Human Vision, MIT Press, A. Watson, Ed., 179–206. Google ScholarDigital Library
    8. Gill, P., Murray, W., and Wright, M. 1981. Practical optimization. Academic Press.Google Scholar
    9. Hunt, R. 2004. The Reproduction of Colour in Photography, Printing and Television: 6th Edition. John Wiley & Sons.Google Scholar
    10. Keelan, B. 2002. Handbook of Image Quality: Characterization and Prediction. Marcel Dekker.Google Scholar
    11. Kelly, D. 1979. Motion and vision. I. stabilized images of stationary gratings. J. Opt. Soc. Am. 69, 9, 1266–1274.Google ScholarCross Ref
    12. Kendall, M., and Babington-Smith, B. 1940. On the method of paired comparisons. Biometrika 31, 3–4, 324–345.Google ScholarCross Ref
    13. Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2007. Contrast restoration by adaptive countershading. Computer Graphics Forum 26, 3, 581–590.Google ScholarCross Ref
    14. Kuang, J., Johnson, G. M., and Fairchild, M. D. 2007. iCAM06: A refined image appearance model for HDR image rendering. Journal of Visual Communication and Image Representation 18, 5, 406–414. Google ScholarDigital Library
    15. Land, E. H., and McCann, J. J. 1971. Lightness and the retinex theory. Journal of the Optical Society of America 61, 1, 1–11.Google ScholarCross Ref
    16. Larson, G., and Shakespeare, R. 1998. Rendering with radiance: the art and science of lighting visualization. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. Google ScholarDigital Library
    17. Le Meur, O., Le Callet, P., Barba, D., and Thoreau, D. 2006. A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 5, 802–817. Google ScholarDigital Library
    18. Ledda, P., Chalmers, A., Troscianko, T., and Seetzen, H. 2005. Evaluation of tone mapping operators using a high dynamic range display. ACM Trans. Graph. 24, 3, 640–648. Google ScholarDigital Library
    19. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Trans. Graph. 25, 3, 646–653. Google ScholarDigital Library
    20. Livingstone, M. 2002. Vision and Art: The Biology of Seeing. Harry N. Abrams.Google Scholar
    21. Lubin, J., and Pica, A. 1991. A non-uniform quantizer matched to the human visual performance. Society of Information Display Int. Symposium Technical Digest of Papers, 22, 619–622.Google Scholar
    22. Meylan, L., Daly, S., and Susstrunk, S. 2006. The reproduction of specular highlights on high dynamic range displays. In Proc. of the 14th Color Imaging Conference.Google Scholar
    23. Moroney, N., Fairchild, M., Hunt, R., Li, C., Luo, M., and Newman, T. 2002. The CIECAM02 color appearance model. In Proc. IS&T/SID 10th Color Imaging Conference, 23–27.Google Scholar
    24. Morovic, J., and Luo, M. 2001. The fundamentals of gamut mapping: A survey. Journal of Imaging Science and Technology 45, 3, 283–290.Google Scholar
    25. Muijs, R., Laird, J., Kuang, J., and Swinkels, S. 2006. Subjective evaluation of gamut extension methods for widegamut displays. In Proc. of the 13th International Display Workshop, 1429–1432.Google Scholar
    26. Pappas, T., Allebach, J., and Neuhoff, D. 2003. Modelbased digital halftoning. Signal Processing Magazine, IEEE 20, 4, 14–27.Google ScholarCross Ref
    27. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of SIGGRAPH’ 98, 287–298. Google ScholarDigital Library
    28. Pattanaik, S., Tumblin, J., Yee, H., and Greenberg, D. 2000. Time-dependent visual adaptation for realistic image display. In Proc. of SIGGRAPH 2000, 47–54. Google ScholarDigital Library
    29. PFSTMO. Library of tone-mapping operators. http://www.mpi-inf.mpg.de/resources/tmo/.Google Scholar
    30. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. 21, 3, 267–276. Google ScholarDigital Library
    31. Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. 2005. High Dynamic Range Imaging. Data Acquisition, Manipulation, and Display. Morgan Kaufmann.Google Scholar
    32. Rempel, A. G., Trentacoste, M., Seetzen, H., Young, H. D., Heidrich, W., Whitehead, L., and Ward, G. 2007. LDR2HDR: On-the-fly reverse tone mapping of legacy video and photographs. ACM Trans. on Graph. 26, 3, 39. Google ScholarDigital Library
    33. Schlick, C. 1994. Quantization techniques for the visualization of high dynamic range pictures. In Proc. 5th Eurographics Workshop on Rendering, 7–18.Google Scholar
    34. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23, 3, 757–765. Google ScholarDigital Library
    35. Smith, K., Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2006. Beyond tone mapping: Enhanced depiction of tone mapped HDR images. Computer Graphics Forum 25, 3, 427–438.Google ScholarCross Ref
    36. Stockham, T. 1972. Image processing in the context of a visual model. Proc. of the IEEE 60, 7, 828–842.Google ScholarCross Ref
    37. Thomspon, W. B., Shirley, P., and Ferwerda, J. A. 2002. A spatial post-processing algorithm for images of night scenes. Journal of Graphics Tools 7, 1, 1–12. Google ScholarDigital Library
    38. Tumblin, J., and Rushmeier, H. E. 1991. Tone reproduction for realistic computer generated images. Technical Report GIT-GVU-91-13, Graphics, Visualization, and Usability Center, Georgia Institute of Technology.Google Scholar
    39. Ward Larson, G., Rushmeier, H., and Piatko, C. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4, 291–306. Google ScholarDigital Library
    40. Wilson, H. 1980. A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38, 171–178.Google ScholarDigital Library
    41. Yoshida, A., Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2006. Analysis of reproducing real-world appearance on displays of varying dynamic range. Computer Graphics Forum 25, 3, 415–426.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: