“Displaced signed distance fields for additive manufacturing”
Conference:
Type(s):
Title:
- Displaced signed distance fields for additive manufacturing
Session/Category Title: Summary and Q&A: Fabrication 3: Printing Machining and More
Presenter(s)/Author(s):
Abstract:
We propose displaced signed distance fields, an implicit shape representation to accurately, efficiently and robustly 3D-print finely detailed and smoothly curved surfaces at native device resolution. As the resolution and accuracy of 3D printers increase, accurate reproduction of such surfaces becomes increasingly realizable from a hardware perspective. However, representing such surfaces with polygonal meshes requires high polygon counts, resulting in excessive storage, transmission and processing costs. These costs increase with print size, and can become exorbitant for large prints. Our implicit formulation simultaneously allows the augmentation of low-polygon meshes with compact meso-scale topographic information, such as displacement maps, and the realization of curved polygons, while leveraging efficient, streaming-compatible, discrete voxel-wise algorithms. Critical for this is careful treatment of the input primitives, their voxel approximation and the displacement to the true surface. We further propose a robust sign estimation to allow for incomplete, non-manifold input, whether human-made for onscreen rendering or directly out of a scanning pipeline. Our framework is efficient both in terms of time and space. The running time is independent of the number of input polygons, the amount of displacement, and is constant per voxel. The storage costs grow sub-linearly with the number of voxels, making our approach suitable for large prints. We evaluate our approach for efficiency and robustness, and show its advantages over standard techniques.
References:
1. M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages. Google ScholarDigital Library
2. M. Attene. 2010. A lightweight approach to repairing digitized polygon meshes. The Visual Computer 26, 11 (2010), 1393–1406.Google ScholarDigital Library
3. M. Atzmon and Y. Lipman. 2020. SAL: Sign Agnostic Learning of Shapes from Raw Data. In Proc. CVPR.Google Scholar
4. M. Atzmon and Y. Lipman. 2021. SALD: Sign Agnostic Learning with Derivatives. In Proc. ICLR.Google Scholar
5. G. Barill, N. Dickson, R. Schmidt, D.I.W. Levin, and A. Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM TOG (Proc. SIGGRAPH) (2018).Google Scholar
6. M. Berger, A. Tagliasacchi, L.M. Seversky, P. Alliez, G. Guennebaud, J.A. Levineand A. Sharf, and C.T. Silva. 2017. A Survey of Surface Reconstruction from Point Clouds. Computer Graphics Forum 36, 1 (2017), 301–329. Google ScholarDigital Library
7. J.-P. Berrut and L.N. Trefethen. 2004. Barycentric Lagrange Interpolation. SIAM Rev. 46, 3 (2004), 501–517.Google ScholarDigital Library
8. S. Bischoff, D. Pavic, and L. Kobbelt. 2005. Automatic restoration of polygonal models. ACM TOG 24, 4 (2005).Google Scholar
9. Blender Online Community. 2020. Blender – a 3D modelling and rendering package. http://www.blender.orgGoogle Scholar
10. A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 157:1–157:13.Google Scholar
11. D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical Models and Image Processing 57, 6 (November 1995), 453–461.Google ScholarDigital Library
12. R.L. Cook. 1984. Shade Trees. In Proc. SIGGRAPH 1984. 223–231.Google Scholar
13. R.L. Cook, L. Carpenter, and E. Catmull. 1987. The Reyes Rendering Architecture. In Proc. SIGGRAPH 1987. 95–102.Google Scholar
14. T. Davies, D. Nowrouzezahrai, and A. Jacobson. 2021. On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes. arXiv:2009.09808 [cs.GR]Google Scholar
15. P. de Casteljau. 1959. Outillage méthodes calcul. Technical Report.Google Scholar
16. E. Eisemann and X. Decoret. 2008. Single-pass gpu solid voxelization and applications. In Proc. of Graphics Interface (GI). 73–80.Google Scholar
17. P. Erler, P. Guerrero, S. Ohrhallinger, N.J. Mitra, and M. Wimmer. 2020. Points2Surf Learning Implicit Surfaces from Point Clouds. In Proc. ECCV. 108–124.Google Scholar
18. G. Farin. 1986. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design 3, 2 (1986), 83–127. Google ScholarDigital Library
19. M. Garland and P.S. Heckbert. 1995. Fast polygonal approximation of terrains and height fields. Technical Report CMU-CS-95-181.Google Scholar
20. H. Gohari, A. Barari, and H. Kishawy. 2018. An efficient methodology for slicing NURBS surfaces using multi-step methods. International Journal of Advanced Manufacturing Technology 95 (2018), 3111–3125.Google ScholarCross Ref
21. A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. 2020. Implicit Geometric Regularization for Learning Shapes. In Proc. ICML.Google Scholar
22. A. Guéziec, G. Taubin, F. Lazarus, and B. Hom. 2001. Cutting and stitching: converting sets of polygons into manifold surfaces. IEEE TVCG 7, 2 (2001).Google Scholar
23. H. Hoppe, T. Derose, T. Duchamp, J. McDonald, and W. Stuetzle. 1993. Mesh optimization. In Proc. ACM SIGGRAPH.Google Scholar
24. Fraunhofer IGD. 2020. Cuttlefish SDK. https://www.cuttlefish.de/.Google Scholar
25. Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.Google Scholar
26. A. Jacobson, L. Kavan, and O. Sorkine-Hornung. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013).Google Scholar
27. T. Ju. 2004. Robust repair of polygonal models. ACM TOG 23, 3 (2004).Google Scholar
28. M. Kazhdan, M. Bolitho, and H. Hoppe. 2006. Poisson Surface Reconstruction. In Proc. SGP.Google ScholarDigital Library
29. M. Kazhdan and H. Hoppe. 2013. Screened Poisson surface reconstruction. ACM TOG 32, 3 (2013).Google Scholar
30. R. Kolluri. 2005. Provably Good Moving Least Squares. In Symposium on Discrete Algorithms.Google Scholar
31. V. Kraevoy, A. Sheffer, and C. Gotsman. 2003. Matchmaker: constructing constrained texture maps. ACM TOG 22, 3 (2003).Google Scholar
32. B. Krayer and S. Müller. 2019. Generating signed distance fields on the GPU with raymaps. The Visual Computer 35 (2019), 961–971.Google ScholarDigital Library
33. W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163–169. Google ScholarDigital Library
34. J. Martinez, S. Hornus, F. Claux, and Sylvain Lefebvre. 2015. Chained segment offsetting for ray-based solid representations. Computers & Graphics 46 (2015), 36–47.Google ScholarDigital Library
35. Mimaki. 2017. 3DUJ-553. https://mimaki.com/product/3d/3d-inkjet/3duj-553/.Google Scholar
36. D. Nehab and H. Hoppe. 2008. Random-Access Rendering of General Vector Graphics. ACM TOG 27, 5, Article 135 (Dec. 2008), 10 pages. Google ScholarDigital Library
37. F.S. Nooruddin and G. Turk. 2003. Simplication and Repair of Polygonal Models Using Volumetric Techniques. IEEE TVCG 9, 2 (2003), 191–205.Google Scholar
38. A.C. Oeztireli, G. Guenneband, and M. Gross. 2008. Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression. Computer Graphics Forum (Proc. Eurographics) (2008).Google Scholar
39. J. Podolak and S. Rusinkiewicz. 2005. Atomic volumes for mesh completion. In Proc. SGP.Google ScholarDigital Library
40. Z. Qin, M.D. McCool, and C.S. Kaplan. 2006. Real-Time Texture-Mapped Vector Glyphs. In Proc. I3D 2006. 125–132. Google ScholarDigital Library
41. J. Reinhard. 2017. Discrete Medial Axis Transform and Applications for 3D Printing. Bachelor Thesis. Technische Universität Darmstadt.Google Scholar
42. J. Rodrigues, M. Gazziro, N. Goncalves, O. Neto, Y. Fernandes, A. Gimenes, C. Alegre, and R. Assis. 2014. The 12 prophets dataset. Technical Report ICMC-USP-400. ICMC, University of Sao Paulo. 1–9 pages. www.aleijadinho3d.icmc.usp.brGoogle Scholar
43. R. Sawhney and K. Crane. 2020. Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains. ACM TOG (Proc. SIGGRAPH) 39, 4 (2020).Google Scholar
44. M.-P. Schmidt. 2019. Additive Manufacturing of A 3D Part. Patent Application US20190134915A1. https://patents.google.com/patent/US20190134915A1/Google Scholar
45. M. Schwarz and H.-P. Seidel. 2010. Fast Parallel Surface and Solid Voxelization on GPUs. ACM Transaction on Graphics (Proc. SIGGRAPH Asia) 29, 6 (2010).Google Scholar
46. J. Shade, S. Gortler, L.-W. He, and R. Szeliski. 1998. Layered Depth Images. In Proc. SIGGRAPH 1998 (SIGGRAPH ’98). 231–242. Google ScholarDigital Library
47. V. Sitzmann, J.N.P. Martel, A.W. Bergman, D.B. Lindell, and G. Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.Google Scholar
48. Stanford Computer Graphics Laboratory. 2014. The Stanford 3D Scanning Repository. https://graphics.stanford.edu/data/3Dscanrep/.Google Scholar
49. B. Starly, A. Lau, W. Sun, W. Lau, and T. Bradbury. 2005. Direct slicing of STEP based NURBS models for layered manufacturing. Computer Aided Design 37 (2005), 387–397.Google ScholarCross Ref
50. J.P. Stevens and D.J. McKenna. 2018. Preparing a polygon mesh for printing. Patent US10137646B2. https://patents.google.com/patent/US10137646B2/Google Scholar
51. Stratasys. 2016. J750. http://www.stratasys.com/3d-printers/production-series/stratasys-j750.Google Scholar
52. Stratasys. 2020. Design for Additive Manufacturing with PolyJet. https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0.Google Scholar
53. L. Szirmay-Kalos and T. Umenhoffer. 2006. Displacement Mapping on the GPU-State of the Art. Computer Graphics Forum 25, 3 (2006), 1–24.Google Scholar
54. T. Tricard, F. Claux, and S. Lefebvre. 2020. Ribbed Support Vaults for 3D Printing of Hollowed Objects. Computer Graphics Forum 39, 1 (2020), 147–159. Google ScholarCross Ref
55. K. Vidimče, S.-P. Wang, J. Ragan-Kelley, and W. Matusik. 2013. OpenFab: A Programmable Pipeline for Multi-Material Fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013).Google Scholar
56. A. Vlachos, J. Peters, C. Boyd, and J.L. Mitchell. 2001. Curved PN Triangles. In Proceedings of the 2001 Symposium on Interactive 3D Graphics (I3D ’01). Association for Computing Machinery, New York, NY, USA, 159–166. Google ScholarDigital Library
57. M. Waechter, N. Moehrle, and M. Goesele. 2014. Let There Be Color! Large-Scale Texturing of 3D Reconstructions. In Proc. ECCV. 836–850.Google Scholar
58. T. Wohlers, I. Campbell, O. Diegel, R. Huff, and J. Kowen. 2020. Wohlers Report 2020: 3D Printing and Additive Manufacturing Global State of the Industry. Wohlers Associates, Inc.Google Scholar
59. S. Yamakawa and K. Shimada. 2009. Removing self intersections of a triangular mesh by edge-swapping, edge hammering, and face lifting. In Proc. IMR.Google Scholar
60. Q. Zhou and A. Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv:2009.09808 [cs.GR]Google Scholar
61. O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. 2013. Chapter 6 – Shape Functions, Derivatives, and Integration. In The Finite Element Method: its Basis and Fundamentals (seventh edition ed.), O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu (Eds.). Butterworth-Heinemann, Oxford, 151 — 209. Google ScholarCross Ref